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 To avoid the interference of a material’s surface factors in Brinell indentation images, which 
adversely affect measurement accuracy, an automatic measurement algorithm for Brinell 
indentations based on a convolutional neural network (CNN) is proposed. To eliminate the 
influence of factors such as scratches and collapses of the material surface on the measurement 
accuracy, the Brinell indentation image as the foreground is divided by the proposed algorithm 
and an indentation bounding box calculation is carried out after obtaining the binarized pixel 
mask of the indentation area. The measurement accuracy of the Brinell indentation image under 
the interference of some material background factors is thus improved. Our experimental results 
show that compared with the traditional automatic measurement method for Brinell indentations, 
Brinell indentation images with a complicated background environment can be measured more 
accurately by the proposed method, with the maximum relative error reduced by 20%. Moreover, 
the proposed method has strong applicability and high robustness for different material surfaces 
under different illumination conditions.

1. Introduction

 The Brinell hardness measurement method is widely used to measure the hardness of 
materials. The Brinell hardness of a material is expressed by ISO(1) as
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where F is the selected test force, D is the diameter of the tungsten carbide alloy ball indenter, g 
is the local acceleration due to gravity, and d is the arithmetic mean of the indentation diameters 
measured in two perpendicular directions. According to Eq. (1), the accuracy of Brinell hardness 
measurement is directly determined by the indentation diameter.
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 With the development of material hardness measurement methods, many researchers have 
begun to study automatic measurement for indentation images.(2) Leta et al. explored a computer 
vision method to replace manual measurement operations for indentation measurement.(3) 
However, in practice, some samples used in Brinell hardness measurement lack surface polishing 
treatment, so there are obvious scratches, dents, and other disturbances on the indentation 
image. When Brinell indentations are observed under microscopic magnification, the 
measurement accuracy is reduced as the high-magnification objective lens approaches the 
material surface because the shorter the distance, the less light enters the field of view. Similarly, 
the top ring illuminator and parallel fill light commonly used with hardness-testing instruments 
cast different spots on the surface of different materials. Since neural network methods can 
achieve superior results to other algorithms in image processing, Tanaka et al. proposed the use 
of convolutional neural networks (CNNs) to extract the features of indentation images, where the 
feature vectors of the indentation edge locations are obtained by the fully connected output 
layer.(4–6) This means that a neural network can achieve excellent measurement accuracy on 
complex material surfaces. The resolution of an image captured by a high-resolution industrial 
camera is reduced by partially cropping or scaling the image. Long et al. proposed a fully 
convolutional network (FCN)(7) method for processing high-resolution indentation images. A 
convolutional structure was used to replace the fully connected layer, which was originally 
attached to the end of the CNN, and the pixel accuracy of image segmentation was improved. 
Ronneberger et al. proposed a modification based on the FCN; they proposed a U-Net(8) network 
to splice feature maps. This network allowed the network architecture to achieve better accuracy 
when trained on a dataset with a small number of samples. However, the above methods only 
obtained diagonal length values of the indentation without considering its overall shape. To 
improve the automatic measurement accuracy of Brinell indentations, in this paper, we propose 
a CNN to segment Brinell indentation images. By obtaining a pixel mask of the indentation area, 
scratches, collapses, and other factors on the surface of the tested sample are eliminated by the 
subsequent algorithm. The proposed algorithm can also measure the surface of most materials 
with most hardness grades. The biggest advantage of this method is that there is no limitation on 
the size of the input image. In addition, our method is much less affected by the surface 
roughness of the material.(9)

 In this study, the system flow chart and the structure of the CNN were first designed. Then, a 
dataset of Brinell indentation images containing manually labeled indentation regions was 
constructed, which was used to train a CNN. Finally, experiments were conducted using blocks 
of standard hardness to verify the reliability and robustness of the proposed algorithm.

2. Design of Automatic Measurement Method

 In the course of production, different materials reflect light differently, and factors such as 
lighting and scratches or etching on the surface of the material affect the accuracy of indentation 
measurements. To avoid the interference caused by the background in Brinell indentation images 
used for indentation extraction, a Brinell indentation segmentation network (BSN) is designed 
for Brinell indentation images. The main function of the BSN is to operate on the input Brinell 
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indentation image and obtain a binarized masked image of the indentation region. Because no 
fully connected layer is used in the network structure, a Brinell indentation image of any 
resolution and size can be accepted by the BSN as an input. Because the size of the image output 
from the network is the same as the input image, the predicted indentation shape and its location 
can be mapped directly onto the input image, and the diameter of the circular Brinell indentation 
is obtained. The BSN used in the proposed method converts the original indentation image, for 
which it is relatively difficult to identify the edges, into a binarized image that is convenient for a 
computer program to make accurate measurements. The processing flow of the method is shown 
in Fig. 1.

2.1 Pretreatment procedure

 To determine the approximate location of the indentation in the image, thereby reducing the 
number of subsequent CNN operations and the interference of complex backgrounds, a 
preprocessing operation is performed on the input raw image. The preprocessing operation 
searches the input Brinell indentation image to find an approximate range where the indentation 
is located, so that the region of interest can be truncated and sent to the BSN for subsequent 
operations. The main flow of the preprocessing operation is shown in Algorithm 1.
 The input image is processed by contrast-limited adaptive histogram equalization 
(CLAHE)(10,11) to improve the image contrast. Compared with adaptive histogram equalization 
(AHE), this method avoids the overamplification of noise and can achieve better results. 
Subsequently, mean filtering is used to eliminate the noise interference, and the image is 

Fig. 1. (Color online) Flow chart of processing method.

Algorithm 1
Preprocessing algorithms.
Input: Original image
Output: Cropped image
(1) Image optimization
(2) Image binarization
(3) Maximum internal connected field search
(4) Calculation of enclosing frame
(5) Expansion of rectangles and cropping
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thresholded using the Otsu(12) algorithm. After thresholding, the indentations and surface 
scratches on the image tend to be connected by fine pathways. By using morphological 
expansion and erosion processing algorithms, the fine pathways at the edges of the indentations 
and scratches are disconnected to help find the maximum internal connectivity domain. Then, 
its enclosing frame is calculated. Because the search for the maximum internal connectivity 
domain does not necessarily yield the whole Brinell indentation region, the enclosing frame 
obtained from the previous search must be expanded to avoid cropping of the indentation part. 
The dimensions of the original input image are (w, h), where w is the width and h is the height of 
the image. The coordinates of the upper left corner and the lower right corner of the searched 
enclosing frame are (x1, y1) and (x2, y2), respectively. The coordinates of the upper left corner and 
the lower right corner of the expanded enclosing frame are (xe1, ye1) and (xe2, ye2), respectively, 
which can be obtained by the following steps.
 Firstly, find the scaling factor of the enclosing frame with dimensions of dx by dy,
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where p is the scaling factor (p = 1.5).
 Secondly, calculate the end coordinates of the expanded enclosing frame as follows.
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2.2 Design of Brinell indentation segmentation network

 The Brinell indentation image within the expanded enclosing frame is cropped and fed into 
the BSN, and a binarized indentation mask image output is computed. To adapt to different 
resolutions of the Brinell indentation input image and to improve the fineness of the image 
segmentation, a design of the BSN based on U-Net is proposed. 
 In the BSN, the basic arithmetic unit is the convolutional block (CB), which is shown in 
Fig. 2. The CB unit is mainly composed of the residual operation,(13) batch normalization, and 
rectified linear units. To extract the details of the indentation image, both the padding size and 
step size of the convolutional operation are set to 1. The CB unit as a whole has different 
numbers of input and output channels. In the BSN, an upsampling convolutional block (UCB) is 
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used to decode the features extracted by the downsampling convolutional block (DCB). In the 
feature extraction stage, to reduce the size of the feature map extracted by the convolution 
operation, a maximum pooling operation with a filter size of 2 × 2 is added to the front of the CB 
unit to obtain the DCB unit. Similarly, an upsampling operation is added to the front of the CB 
unit to obtain the UCB unit.
 As shown in Fig. 3, the input image is a single-channel grayscale image. To improve the 
spatial scale information,(14) three images of different sizes are obtained through upsampling and 
downsampling of the input image. A DCB unit for convolutional feature extraction is used in the 
original input image, upsampling image, and downsampling image. Then, the feature map 
extracted on the downsampling feature channel is upsampled, and the feature map extracted on 
the upsampling feature channel is downsampled, so that the two feature maps fit the feature map 
extracted from the original input image channel. The three feature maps are connected by the 
channel splicing method. If the sizes of two of the feature maps are not the same, they are 
expanded or cropped using zero-filling or pooling operations. The feature map obtained by 
stitching uses the UCB unit to perform an upsampling convolutional operation. Finally, an image 
with the same size as the original input image but a different number of channels is obtained. To 
obtain the output of the binarized mask image, the number of channels is adjusted through a 
convolutional operation with a filter size of 1 × 1, then the pixel mask output is obtained. The 
number of channels in the feature map at each stage is labeled with a number below each feature 
map as in Fig. 3.

3. Segmentation Network Training

3.1 Dataset preparation

 The BSN requires a Brinell indentation image dataset with marked indentation areas for 
training. An HMAS series Brinell hardness tester produced by Shanghai Yanrun Company is 
used in the experiments, as shown in Fig. 4. The top of the platform is equipped with a miniature 
industrial camera, which outputs single-channel grayscale images with a resolution of 1280 × 

Fig. 2. (Color online) Structure of CB.
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1024 by default. The equipped optical lens has a small field of view and an aspheric lens inside, 
and can eliminate the distortion of the Brinell spherical indentation image. The front of the 
instrument is equipped with a micrometer eyepiece for manual measurement. The micrometer 
eyepiece and the industrial camera on the top can be used to observe the surface of the material 
at the same time through the optical path branch in the instrument, which is convenient for the 
collection and measurement of indentation images.
 To improve the ability of the BSN to discriminate Brinell indentations on a variety of 
materials and the robustness of the proposed method, various materials are used for testing, such 
as standard-hardness blocks, chrome vanadium steel, and carbon steel. In accordance with the 
material characteristics, various test forces are applied to each sample material. Some research 

Fig. 3. (Color online) Structure of the BSN.

Fig. 4. (Color online) Test platform.
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results show that the target location distribution in the training sample dataset has a major 
impact on the robustness of the trained neural network.(15) A problem is that the location 
distribution of Brinell indentations in the training sample data is too concentrated around a 
certain point, resulting in a low recognition rate for the trained BSN for samples with large 
deviations from this point. To solve this problem, the test platform is electrically controlled to 
translate the pressed test sample while collecting the Brinell indentation image data. The Brinell 
indentations in the dataset are thus distributed as evenly as possible within the field of view of 
the industrial camera.
 After collecting the indentation images, the indentation areas must be manually marked for 
reference during the subsequent BSN training. Note that a Brinell indentation is sometimes not a 
standard circle in this study. When using marking software, directly using a circular area as a 
simple mark would often result in part of the actual indentation area being missed or for part of 
the area outside the indentation to be marked. Therefore, a dot field labeling method is used for 
manual indentation area labeling. Part of the labeling results are shown in Fig. 5.
 For a small amount of training data, such as the annotated Brinell indentation area dataset 
constructed in this study, it is necessary to perform a data enhancement operation on the training 
samples.(16,17) After the data enhancement operation is performed, the number of samples used 
for neural network training is significantly increased, and the robustness of the trained neural 
network can be further improved by artificially introducing interference. The Augmentor(16) 
data enhancement tool is used in the training process of this method. Rotation, scaling, 
translation, and deformation operations are added on the basis of the existing artificially marked 
image data. The  probability of each transformation operation is shown in Table 2.
 Various transformation operations are synchronized with the original indentation image and 
the corresponding marked image. When performing rotation, scaling, and translation, the 

Fig. 5. Comparison of circular and manual indentation area labeling.
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specific rotation angle, zoom ratio, and translation distance are obtained randomly and the range 
is also limited. Two thousand sets of image data that can be used for neural network training are 
obtained after data enhancement.

3.2 Optimization of training phase and design of loss function

 The PyTorch(18) neural network framework is used to build and train the BSN, which includes 
two steps. The first step is the training process. In this process, the Brinell indentation dataset is 
randomly divided into three parts: a training set, a verification set, and a test set, with a size ratio 
of the three sets of 8:1:1. To limit the resources used during training, the input image is scaled to 
50% of the original size for each training. The whole training process is iterated five times on 
the training set, and after every 100 images are trained, the verification set is used for 
verification. In each iteration, the data used for training are randomly selected from the training 
set. To verify the consistency of the results each time, the data in the verification set are extracted 
and verified in a predetermined order. The second step is the evaluation of the effectiveness of 
the training, in which the image obtained by BSN prediction is compared with the manually 
labeled reference image pixel by pixel, and the similarity between them is calculated. The results 
obtained on the verification set each time are used to adjust the learning rate of the neural 
network. When the correct rate of the verification results has been within a certain interval 
several times, the learning rate is reduced and further training is carried out.
 Using an appropriate loss residual function to measure the difference between the BSN 
prediction and the expected result can make the neural network converge quickly. The difference 
between the output of the CNN and the artificially labeled reference image in the subsequent 
learning stage can be gradually reduced. In the proposed method, the results of the BSN and 
manual labeling are both binarized pixel mask images. For this type of image segmentation 
problem, some research results have shown that the two-category, cross-entropy algorithm can 
better reflect differences between the BSN and manual labeling results.(19) The two-category, 
cross-entropy result after applying the sigmoid function is passed to the framework as the loss 
value for evaluation and optimization. The loss function is calculated as

 ( )( ) ( ) ( )( )( )log 1 log 1n n n n nl y z y zδ δ= − ∗ + − ∗ − , (4)

Table 2
Probability of various transformations for sample processing.
Transformation method Transformation processing probability (%)
Keep same 30
Rotate and cut 20
Zoom and crop 15
Pan and crop 15
Distortion 20
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where zn and yn represent the values predicted by the neural network and the artificially labeled 
value for the nth training sample, respectively, and δ represents the sigmoid function.

4. Experimental Results and Discussion

4.1 Comparison between prediction and reference image on test set

 After the BSN is trained, the proposed method is tested with the images in the test set to 
verify the effectiveness of pixel mask extraction of the BSN on Brinell indentation images and 
also verify the difference between the final bounding boxes obtained by the proposed method 
and manual measurement. The images in the test set do not overlap with those in the training set 
and validation set. Part of the experimental results are shown in Fig. 6.
 We compare the indentation area predicted by the BSN with the manually marked indentation 
area using the mean of the differential image. The result of the BSN prediction is in red and that 
of manual marking is in green. The differential image shows that the prediction result of the 
BSN is very close to the result of manual marking. The prediction results of the BSN are still 
relatively satisfactory for the image with blurry edges even if there are many cracks around the 
indentation due to the nature of the material. To reduce the misjudgment when solving the 
bounding box for the BSN prediction results and reduce the influence of the deviation when 
extracting the edge in the diameter measurement of the Brinell circular indentation, some small 
islands are regarded as noise and discarded in the binary mask image predicted by the BSN. The 
largest connected domain is selected as the range of the indentation, and the circumscribed 

Fig. 6. (Color online) Part of the experiment results. (a) Original images after segmenting, (b) indentation areas 
with manual marking, (c) indentation areas predicted by BSN, (d) difference images between the manually marked 
images (green) and prediction results (red), and (e) visual images of manually marked bounding box and prediction 
results on original images.
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rectangle is found for this domain. Because a spherical indenter is used in the Brinell hardness 
experiment and the indentation is approximately circular, it is usually only necessary to find a 
bounding box whose edges are parallel to the axes of the image coordinate system. The length d1 
and width d2 are used in the Brinell hardness calculation formula. In practical applications, 
OpenCV is used to calculate the bounding box of the artificially annotated image and the BSN 
image.

4.2 Testing on other materials

 To test the effectiveness of indentation extraction by the proposed method on other materials, 
several different samples from those in the training dataset are selected for the Brinell hardness 
test. The robustness of the proposed method is tested by comparing the indentation bounding 
boxes obtained by the proposed method and by manual marking. In the experimental process, it 
is found that although some of the materials in the training dataset are metals, such as titanium 
alloys, due to the different properties of the materials, the interior of the indentations is markedly 
different from those of the samples in the dataset under the annular light on the top of the test 
platform. Some relatively soft materials clearly show phenomena such as indentation collapse. 
For such difficult samples, the indentation prediction and the extraction cannot be performed 
well by the BSN trained on the dataset with an insufficient number of sample types. The DCB 
unit is used as an encoding network in the BSN. Its main function is to abstract the image data 
and extract the high-level semantic features so that the UCB unit can generate pixel mask images 
based on the features. Therefore, for the different samples, the DCB unit is still the main object 
that requires training. The UCB unit weight of the BSN that has been trained on the original 
dataset is fixed, and the PyTorch neural network training framework is only used to perform 
incremental training on the weight of the DCB unit part using the newly collected indentation 
image samples. Then, the trained network is used to test new materials. Part of the experimental 
results on different materials obtained using the proposed method are shown in Fig. 7.
 The left column in Fig. 7 shows the original images, the middle column shows the indentation 
areas predicted by the BSN, and the right column shows images of the bounding boxes on the 
original images obtained by manual annotation and BSN prediction. The green boxes show the 
manual labeling results and the red boxes show the measurement results obtained with the 
proposed method. As shown, the indentations are clearly visible in image (a) due to the hard 
material; images (b) and (c) are less homogeneous due to the softer material, resulting in 
collapses and breaks around the indentations. However, they tend to interfere with the 
segmentation of the indentation algorithm. As can be seen from the middle segmentation result 
graph, our method is more robust to collapse and rupture around the indentation, and still does a 
good job of segmenting the indentation in this case. It can be seen that the proposed method can 
also obtain measurement results that are close to the manual measurements on materials other 
than those in the training dataset. This shows that the proposed method is applicable to not only  
the Brinell indentation measurement of the materials covered by the training dataset, but also the 
Brinell indentation measurement of most materials, indicating its high robustness to the input 
material of the sample.
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 To compare the measurement accuracy of the proposed method with that of the traditional 
method, the maximum internally connected domain (MICD) method is introduced in the 
experiment, which consists of the first four steps in the preprocessing algorithm. The range of 
the indentation is obtained by calculating the largest internally connected domain binarized in 
the Brinell indentation image. For the same Brinell indentation image, the MICD method and the 
proposed method are used to measure the Brinell indentation, and the results are compared with 
the manual measurement. The experimental measurement data are shown in Table 3.
 As shown in Table 3, each material is tested three times under each test force. The diameter 
of the Brinell circular indentation and the calculated Brinell hardness are recorded as the average 
of the three test results. Compared with the MICD method, the final result of the Brinell 
hardness calculation is closer to the manual measurement, which means that the proposed 
method gives a result closer to manual measurement than the MICD method.
 Figure 8 shows the minimum, maximum, and average relative error between the MICD 
method and the proposed method for different materials, such as stainless steel, titanium dioxide, 
and copper alloy. As shown in Fig. 8, the error between the proposed method and the manual 
measurement is generally lower than that of the MICD method, indicating that the proposed 
method has higher measurement accuracy. Comparison of the data between the proposed 
method and manual measurement showed that the maximum relative error between them is 
1.05%. The minimum relative error is 0.02%, indicating that the error between the proposed 
method and manual measurement is small. This means that, in some cases, the proposed method 
can replace the automatic measurement of Brinell indentation operated manually.

Fig. 7. (Color online) Part of the experimental results on different materials. (a) Indentation of stainless steel under 
490 N test force, (b) indentation of titanium dioxide under 196.14 N test force, and (c) indentation of copper alloy 
under 294 N test force.
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Table 3
Measurement data on different materials.

Average diameter of indentation (µm) Brinell hardness
Sample 
name

Test 
force (N)

Manual 
measurement MICD Proposed 

method
Manual 

measurement MICD Proposed 
method

Stainless 
steel

490.33 325.91 ± 1.06 332.41 ± 1.77 324.05 ± 1.56 702.70 ± 4.58 675.38 ± 7.28 710.83 ± 6.87
539.37 332.15 ± 3.32 346.64 ± 6.00 330.76 ± 3.60 744.29 ± 15.01 683.46 ± 23.41 750.62 ± 16.44
588.40 353.30 ± 1.84 363.37 ± 4.83 353.35 ± 1.56 717.06 ± 7.53 677.96 ± 17.92 716.85 ± 6.40
637.43 365.38 ± 2.19 373.83 ± 0.00 364.37 ± 2.78 726.04 ± 8.70 693.35 ± 0.02 730.17 ± 11.18
686.47 379.40 ± 0.69 388.03 ± 2.57 378.42 ± 0.59 724.81 ± 2.64 692.81 ± 9.22 728.58 ± 2.28

Titanium 
dioxide

196.13 315.84 ± 3.17 323.10 ± 9.42 316.83 ± 3.68 299.45 ± 6.07 286.75 ± 17.02 297.60 ± 6.99
245.17 359.16 ± 6.25 386.93 ± 4.93 360.55 ± 6.07 289.29 ± 10.31 248.94 ± 6.29 287.03 ± 9.88
294.20 415.26 ± 4.71 428.27 ± 5.99 393.72 ± 4.68 293.56 ± 7.98 243.54 ± 6.93 288.43 ± 6.99
343.23 415.26 ± 4.71 483.88 ± 23.16 416.37 ± 3.14 302.28 ± 6.87 223.56 ± 22.21 300.59 ± 4.60
392.27 435.83 ± 0.45 501.77 ± 5.09 439.17 ± 0.01 313.27 ± 0.65 235.81 ± 4.80 308.48 ± 0.01

Copper 
alloy

196.13 458.63 ± 4.95 473.17 ± 15.82 459.26 ± 5.45 141.38 ± 3.05 133.14 ± 8.69 141.00 ± 3.33
245.17 507.95 ± 4.68 510.65 ± 7.57 509.70 ± 3.68 143.78 ± 2.70 142.30 ± 4.21 142.77 ± 2.10
294.20 556.06 ± 4.77 572.69 ± 2.07 560.09 ± 6.44 143.66 ± 2.50 135.31 ± 1.00 141.60 ± 3.32
343.23 595.10 ± 5.40 610.36 ± 23.78 596.56 ± 5.43 146.06 ± 2.67 139.38 ± 11.48 145.34 ± 2.66
392.27 636.03 ± 1.78 647.41 ± 4.44 632.55 ± 1.32 145.79 ± 0.83 140.65 ± 1.95 147.43 ± 0.63

Fig. 8. (Color online) Comparison of relative errors between different materials using different methods. 
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5. Conclusion

 To improve the accuracy and robustness of the automatic measurement of Brinell 
indentations, a CNN method was proposed. The indentation foreground in the Brinell 
indentation image is extracted by the CNN and converted into a binarized pixel mask image. 
The bounding box of the pixel mask image is solved to obtain the average diameter of the Brinell 
circular indentation, so as to complete the automatic Brinell indentation hardness calculation. 
Compared with solving the bounding box of the indentation area directly on the original image, 
the proposed method of using the CNN for indentation image segmentation reduces the 
difficulty of the subsequent process to solve the bounding box. To verify the measurement 
accuracy and robustness of the proposed method, a Brinell indentation image dataset was 
constructed and an experiment was carried out on samples different from those in the training 
dataset. The experimental results show that the proposed method has high robustness to Brinell 
indentation images of different materials. Hardness-testing instruments are gradually developing 
in the directions of miniaturization and multifunctionality. Our next work is to quantify the 
neural network in the automatic measurement algorithm and deploy it on a small embedded 
board.
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