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 Bed-exit behavior recognition can be the first line of defense to prevent a subsequent fall and 
injuries, especially for patients with a high fall risk. The techniques adopted to recognize bed-
exit behavior include sensor- and vision-based processing. Generally, vision-based techniques 
can obtain a wide range of activity information to ensure a good recognition performance. 
Privacy concerns, however, impede the potential use of vision-based techniques and require the 
monitoring of activities in only a limited region. This paper focuses on behavior analysis using 
sensor-based techniques to deal with privacy concerns and other practical issues such as 
environmental cleaning and behavior differentiation between patients and caregivers. A local 
object tracking (LOT) technique based on an array of multiple reflective infrared (IR) sensors is 
developed to monitor user activities in a limited region. The proposed IR-based LOT technique 
utilizes a finite state machine (FSM) to differentiate the bed-exit activities from a caregiver and 
in-bed user activities. Furthermore, this bed-exit recognition system is realized as a product 
prototype to examine its performance in a real ward environment. The experimental results 
show a correct recognition rate of 99% for 26 bedside activities, four of which are caregiver 
activities, 16 of which are the everyday activities of the in-bed patient, and six of which are bed-
exit activities. In a satisfaction survey conducted at a medical institution, 89% of participants (33 
caregivers and 22 patients) considered the system to be effective and 90% of them were satisfied 
with the quality of the bed-exit recognition prototype. 

1. Introduction

 Falls are typically a marker related to the health, environment, behavior, and socio-economic 
status of older people.(1) Findings show that almost one in three community-dwelling people 
aged over 64 fall every year.(2–4) Fractures, head injuries, and even death are common 
consequences of falls, and the quality of life for an injured person can be degraded.(5) For those 
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with a high fall risk, such as stroke survivors, injured patients, and people suffering from balance 
disorders, one of the fall prevention approaches focuses on bed-exit behavior monitoring. 
According to the World Health Organization (WHO) “Global Report on Falls Prevention in 
Older Age”, elderly people living in nursing homes fall more often than those living in the 
community. Approximately 30–50% of people living in long-term care institutions fall each 
year, and 40% of them experience recurrent falls.(6) In addition to the community environment, 
it is essential for nursing institutions to establish an effective bed-exit monitoring system for fall 
prevention. 
 Human behavior analysis is a process consisting of activity monitoring and behavior 
recognition. Generally, there are two types of bed-exit behavior recognition techniques: sensor- 
and vision-based.(7) In the sensor-based techniques, the behavior recognition system uses fixed 
modules such as an infrared (IR) sensor,(8–10) a hybrid IR and pressure sensor,(11) a piezoelectric 
sensor, (12) and radio frequency identification (RFID)(13,14) to detect an object in a limited region. 
Furthermore, mobile modules based on an accelerometer and gyroscope can be integrated in 
wearable devices to monitor the movement of an object.(15,16) On the other hand, the vision-based 
techniques typically employ a deep learning model to recognize human behavior after a data 
training process. Specifically, the vision source can be a video sequence,(17,18) IR thermal 
images,(19) or integrated images from an RGB or IR camera.(20,21) Human behavior analysis 
involves monitoring an object using these techniques to detect objects, and then using the results 
to recognize bed-exit behavior. Compared with sensor-based techniques, vision-based 
techniques can obtain activity information in a wider range and have better potential to extract 
behavior recognition results, such as fall detection after a bed exit.
 In addition to being effective, a successful bed-exit system relies on practical considerations 
at the patient, caregiver, and institution ends. Privacy concerns are the main challenge posed by 
patients and their families. Obviously, large camera devices deployed in a ward will raise 
concerns of invasion of privacy. This can impede and even prohibit the use of vision-based bed-
exit behavior recognition solutions. In fact, installing a camera in a ward to monitor human 
activities is feasible only with the agreement of the patient. Another practical consideration 
arises when the deployment of a bed-exit system can negatively affect the environmental 
cleaning quality. Problems with system deployment have been observed for both sensor- and 
vision-based techniques. For vision-based techniques, modification of the ward itself is typically 
required, while for sensor-based techniques, a sensor fixed in/on the bed may produce an 
additional burden to caregivers during their service. Any modification of the ward requires a 
detained plan including ward schedule adjustment and cleaning, and therefore post-installation 
deployment without ward modification is preferred at the institution end, so that the bed-exit 
system can be set up and removed as required. Furthermore, activities in a ward environment are 
diverse and include those of the patient, visitors, and caregivers. Accordingly, a bed-exit system 
must differentiate bed-exit behaviors from other activities conducted by caregivers.  
 To address the aforementioned practical issues, we have designed a sensor-based local object 
tracking (LOT) technique to develop a bed-exit monitoring system. In LOT, the detection range 
in which specific activities (e.g., bed entry and bed exit) are monitored is limited (e.g., the 
bedside) and may be limited to part of the patient’s body. LOT can ensure that the detection area 
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covering the target is as small as possible to better preserve the privacy requirement. Generally, 
behavior recognition techniques, especially the vision-based ones, tend to adopt wide-range 
object tracking to cover as wide detection area as possible so as to obtain more activity 
information. Although the sensor-based techniques are suitable for LOT applications, the 
effectiveness of behavior recognition can be determined by the detection range to deal with 
diverse behaviors in the ward. That is, the detection range decides the trade-off between 
effectiveness and privacy concerns. In this study, a LOT system based on an array of multiple 
reflective IR sensors is proposed to balance this trade-off. The IR array is designed to cover only 
the bed area in a LOT manner, and is combined with a finite state machine (FSM) model to 
differentiate bed-exit behavior from caregiver activities. Furthermore, the proposed LOT system 
is realized as a product prototype. This prototype can be fixed to or post-installed at the head of 
a bed, and achieves a good environmental cleaning quality. In contrast to existing sensor-based 
techniques,(11–14) in which sensors are placed at different locations of a bed, the structure of the 
sensor array can be easily integrated into a single device, implying its potential for post-
installation deployment. On the other hand, the current IR monitoring systems detect binary 
bed-related behaviors (i.e., bed exit and bed entry) using a single sensor near the bed.(8–10) 
Caregiver activities, however, may complicate the bed-related behaviors, having a negative 
impact on the effectiveness of bed-exit detection. In this study, we adopt the sensor array to 
continuously track the spatial and temporal variations of user activities in such a way that 
multiclass behaviors of the patient and caregiver can be detected.
 A series of experiments are conducted in a ward environment to monitor 26 predefined 
bedside activities: six bed-exit activities and 20 non-bed-exit activities associated with the in-
bed patient and caregivers. In addition to the experiments, a pilot study involving a questionnaire 
survey is carried out at a medical institution to collect real-world feedback from 55 participants 
who experienced the proposed bed-exit prototype. Both experimental and questionnaire results 
indicate that the proposed LOT-based system is effective in detecting bed-exit behaviors in a 
ward environment.
 This paper is organized as follows. Section 2 describes the proposed LOT system using an IR 
sensor array for bed-exit detection. Section 3 presents the prototype implementation of the LOT-
based bed-exit system, while the experimental and questionnaire results obtained at the medical 
institution are reported in Sect. 4. Section 5 gives conclusions and future works.

2. LOT Based on Infrared Array

 This section describes the concept of LOT and presents a LOT technique using an IR sensor 
array to recognize bed-exit behavior. 

2.1 System overview

 Figure 1 illustrates the difference between wide-range tracking and LOT in a smart ward 
environment. For wide-range object tracking, a tracking device (e.g., video camera) is typically 
deployed at a higher position than the tracked object so as to capture information over a wide 
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range. This wide-range information can contribute to the tracking of various object behaviors 
such as bed exit and falling. LOT, however, detects an object using information obtained in a 
limited range. Compared with wide-range object tracking, LOT is more suitable for single-
purpose applications. Although wide-range object tracking is beneficial in designing 
multipurpose systems, the computational complexity, data transmission bandwidth, and power 
consumption may be high. In this paper, a LOT technique based on an IR sensor array is 
proposed to achieve a lightweight and high-efficiency object tracking system. 
 Figure 2 presents a reference architecture of such a LOT system designed for bed-exit 
detection. The lower half of Fig. 2 corresponds to the IR array and the upper half shows the 
essential components used to process the LOT sensing data. In the lower half of Fig. 2, N IR 
sensors constitute an IR array, in which the distance between two neighboring sensors is d cm. 
Specifically, an IR reflective sensor, which includes an emitter and a receiver, is selected to 
detect objects in such a way that the LOT system can be built in a single device. When the IR 
detection distance is fixed to D, the effective detection area EA of the IR array is given by

 ( )1 .EA N d D= − × ×  (1)

 Within the detection area, the IR array can obtain the object position in accordance with the 
sensor identity (ID), and the object movement is further analyzed by recording the variation of 
position with time. The upper half of Fig. 2 corresponds to the LOT system diagram. More 
specifically, a micro control unit (MCU) is in charge of the sensor data computing, user input 
(Mic and Buttons), user output (Display and Speaker), and communication. The communication 
components may include a tip-ring-sleeve (TRS) socket connected to a general call bell system, 
and a Wi-Fi (officially 802.11)(22) connection with a smart ward system. Both the TRS socket and 
the Wi-Fi connection aim to either give a notification of a bed-exit event or communicate with 

Fig. 1. Wide-range and LOT, where the object is a human body. The region inside the dashed line is the tracking 
range.
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the information system, the discussion of which is beyond the scope of this paper, to control the 
bed-exit system. 

2.2 Bed-exit behavior recognition 

 To detect the object behavior, an FSM can be considered by constructing the states and their 
corresponding transactions according to the information of the object position and moving 
direction. As shown in Fig. 3, four main states (i.e., Getup, Bedside, Bed-exit, and In-bed) are 
included in the bed-exit FSM excluding the Start/Rest state. Let P be the 1 × N position matrix

 [ ]0 1 ,i Nv v v v= … …P  (2)

where vi stands for the detection result of the ith IR sensor. vi is a binary variable in which 0 and 
1 represent no object detection and object detection within D by the ith sensor, respectively. Let 
S be the state matrix with M position matrices:
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 Each row corresponds to a specified N-sensor position in state S. For a six-sensor LOT 
system, the Getup state shown in Fig. 3 may be specified as

Fig. 2. Architecture of LOT system with sensor array.
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In the state matrix [Eq. (4)], four position matrices are included (i.e., M = 4) to indicate a human 
body located in the middle of a bed. In other words, the position matrix may be [1 1 0 0 0 0] or [0 
0 0 0 0 1] when the target is located at the side of the bed.
 At time t, the LOT system detects the object position Pt and examines whether Pt is in state S 
by first calculating the residence matrix

 ,T
t= ×R P S  (5)

where ST is the transpose of state matrix S. The residence threshold is denoted as H (H ≥ 0), and 
Pt can be determined to be in state S when the value of any element in R is greater than or equal 
to H. Consequently, the residence matrix [Eq. (5)] combined with the residence threshold defines 
a transaction condition in the FSM. To differentiate the bed-exit behavior from other behaviors, 
three transaction conditions based on residence thresholds (i.e., H1, H2, and H3) are associated 
with each state. The non-bed-exit behaviors include caregiving activities and in-bed activities 
such as turning over and hand waving. The first transaction condition corresponds to the object 
position in the bed, whereas the second transaction condition examines whether the target or 
another object (e.g., caregiver) is located within the detection area. In Eq. (4), the position matrix 
for the Getup state implies that the object is in the middle of the detection area. Accordingly, the 
state matrix can be simplified to [0 0 1 1 0 0], and the corresponding residence threshold H1 is 
set to 2. On the other hand, the position matrix specified for the boundary examination is given 
by [1 0 0 0 0 1], and the required residence threshold H2 is 0. In the Getup state, the two 
transaction conditions are H1 = 2 and H2 = 0. These conditions indicate that the object is in the 
middle of the bed. Furthermore, Eq. (4) can be rewritten as

Fig. 3. Bed-exit system states and transactions.
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On the basis of the state matrix [Eq. (6)], an object position Pt = [0 1 1 1 0 0] detected by the six-
sensor LOT system can obtain R = [2 0]. Consequently, the position Pt remains in the Getup state 
when the resultant values of the residence matrices satisfy the transaction conditions mentioned 
above:
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For another object position Pt+1 = [1 1 0 0 0 0], its corresponding residence matrix is computed 
as follows:
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Then, Pt+1 is not in the Getup state according to the transaction conditions. 
 The first two transaction conditions are related to the object position and can be effective for 
detecting whether the object is on the bed or at the edge of the bed. The caregiver activities can 
therefore be recognized from the fact that most caregiver activities are conducted at the edge of 
the bed. The hand-related activities such as hand waving and fetching, however, are easily 
confused with the activities defined in the FSM states. For instance, the position matrices for 
fetching are similar to those of the Getup state. Accordingly, a third transaction condition with 
residence threshold H3 is used to filter hand-related activities when the object is on the bed. 
More specifically, the transaction condition H3 = 1 holds when the incoming position is 
maintained for n seconds (n ≥ 0). This condition is based on the observation that most hand 
movements have a higher speed than body movements. We denote the state transaction as a 
binary variable ST  expressed as

 

if all three transaction 
s

conditions ar1,
0, otherwi e.

e met,
ST


= 


 (9)

As shown in Fig. 3, the currently active state computes Eqs. (5) and (9) in order for a new Pt to 
obtain the state transaction variable at time t. The binary transaction variable for the Getup state 
is Getup, the variable for the Bedside state is Bedside, and so forth. When a new Pt does not 
remain in the current state (i.e., its binary transaction variable is 0), Eq. (9) is calculated for other 
neighboring states to determine the state transaction. 
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 In the proposed bed-exit FSM for the six-sensor LOT system (Fig. 3), a bed-exit behavior is 
regarded as a series of ordered state transactions. That is, a bed-exit behavior starts from the 
Getup state, then the object turns around to the bedside, and finally the object leaves the bed. 
After the bed-exit event, either the object returns to the bed (i.e., In-bed state) or this Bed-exit 
state remains unchanged. In the latter case, the state returns to the initial Start state and ignores 
any potential activities until a new Getup state is detected. This is because under the situation 
that no object is detected on the bed, all subsequent activities are unrelated to the bed-exit 
behavior, for instance, caregiving activities and even the activity that the object returns to the 
bed. The proposed FSM also defines three warning stages when the object is detected in the 
following states: Getup, Bedside, and Bed-exit. In addition to the stage-3 warning, which is 
essential for bed-exit detection systems, stage-1 and stage-2 warnings can be employed for users 
with high fall risks. When the current state is in the warning stage, the system must notify 
caregivers and/or the care institution. In this study, the proposed LOT prototype utilizes multiple 
notifications including a voice, call bell, and messages via Wi-Fi connection. Details of the 
prototype implementation are given in Sect. 3. 

2.3 FSM parameter selection

 This subsection presents the state matrices and transaction conditions for the main states in 
the FSM. The FSM parameters are listed in Table 1. The first two transaction conditions are used 
to examine the object position, and therefore need to be combined with the state position 
matrices. More specifically, the position matrices combined with the first transaction condition 
are considered in the object position examination. In the Getup state, the object position is 
assumed to be in the middle of the bed. When the object gradually moves to leave the bed, “1”s 
occur on one of the two sides of the matrix. Note that the object can move in two different 
directions (i.e., right and left), and two position matrices are defined accordingly. When the 
object moves to the right side of the bed, the position matrix [0 1 1 0 0 0] in the Bedside state 
changes to [1 1 0 0 0 0] in the Bed-exit state. Alternatively, the position matrix [0 0 0 1 1 0] in the 
Bedside state changes to [0 0 0 0 1 1] in the Bed-exit state. In the In-bed state, the position 
matrix [0 1 1 1 1 0] combined with the transaction condition H1 ≥ 2 indicates that the object is on 
the bed but not at the edge of the bed. 
 The position matrices combined with the second transaction condition are considered in the 
edge examination. This transaction condition aims to clarify whether any caregiving activities 

Table 1
FSM parameters for LOT system with six IR sensors.
State Getup Bedside Bed-exit In-bed

Position matrices
(H1/H2)

001 100
(H1 = 2)

{011 000,
000 110}
(H1 = 2)

{000 011,
110 000}
(H1 ≥ 1)

011 110
(H1 ≥ 2)

100 001
(H2 = 0)

100 001
(H2 = 0)

100 001
(H2 = 1)

100 001
(H2 = 0)

H3 H3 = 1 H3 = 1 H3 = 0 H3 = 1
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occur even when the object is detected on the bed. When a caregiver stands on the right/left side 
of the bed to conduct care services, bed-exit behavior detection and possible warnings are 
unnecessary. For all four states in the FSM, the position matrix associated with this second 
transaction condition is fixed to [1 0 0 0 0 1]. In the Bed-exit state, the second transaction 
condition for the object at the edge of the bed is H2 = 1, whereas H2 = 0 for the other three states. 
 The position matrices combined with the third transaction condition are considered in the 
time examination. On the basis of this condition, the IR-based LOT system can avoid regarding 
the hand movement as body movement, which is utilized to recognize the bed-exit behavior by 
default. For the Getup, Bedside, and In-bed states, the third transaction condition is H3 = 1, and 
therefore the first two transaction conditions must be continuously satisfied for a prespecified 
time slot. In the Bed-exit state, however, the third transaction condition is set to H3 = 0. This is 
because when the FSM changes from the Getup or Bedside state to the Bed-exit state, the bed-
exit behavior can be confirmed and an immediate warning or notification should be given.

3. System Implementation

 The aim of this study is to realize a LOT system with an N-sensor array for a bed-exit 
monitoring application. Figure 2 in Sect. 2.1 illustrates the architecture for the bed-exit system 
under consideration. To further examine the effectiveness of the LOT-based bed-exit system, the 
architecture of the N-sensor LOT system presented in Fig. 2 is implemented as a product 
prototype. The prototype implementation includes the hardware and firmware design. Figure 4 
presents the hardware component assembly. As shown in Fig. 4(a), the outer case consists of a 
metal backplane, plastic shell, and buttons for the user input. The rectangular hole in the front 
view of the shell is reserved for the LCD display, while the multiple circular holes in the 
backplane are used for screws to fix the LOT system either on a wall or a mobile stand. Figure 
4(b) shows the main components required to build the system. In Fig. 4(b), the MCU and TRS 
modules are attached on a printed circuit board (PCB), and then the other components, including 
the IR sensors, display, microphone, speaker, and battery, are connected to the PCB with wires. 
A battery is adopted as an additional source to supply power in the case of a short-term power 
failure. Figure 4(c) gives a snapshot of the system prototype after component assembly. As 
shown in Fig. 4(c), the current prototype utilizes six reflective IR sensors, which are deployed on 
both sides evenly. Furthermore, the outermost sensor is further from its neighboring sensor so as 
to detect the bedside position more effectively. Figure 4(d) presents a front view of the prototype. 
With the IR array with six sensors, the prototype can detect the position and moving direction of 
the object, from which it recognizes the bed-exit behavior.
 In the firmware design, the FSM diagram defined in Fig. 3 is realized and operates in the 
MCU. When the FSM state is in the warning stage, a signal is sent via the TRS to enable the 
alarm in the call bell system; meanwhile, a prespecified message can be transmitted via the Wi-
Fi module. Additionally, the firmware reads the user request from the buttons and shows the 
corresponding text in the display module to respond to the request. User requests include the 
adjustment of the time and date, voice recording, and adjustment of the voice volume. In our 
implementation shown in Fig. 4, the voice processing is carried out using a voice/speech chip on 
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the PCB. Accordingly, the prototype supports a local warning to notify a caregiver near the bed 
in the presence of a bed-exit event. 

4. Performance Results and Analysis

 This section presents the performance of the LOT-based bed-exit system in terms of 
experimental and questionnaire results. Both results are obtained using the prototype shown in 
Fig. 4. Specifically, the bed-exit prototype is deployed at the head of the bed in such a way that 
the detection range of the IR array can cover the bed. The IR detection distance is set to 1.6 m, 
which is slightly shorter than the length of the bed (typically 2 m) to avoid the interference of 
non-bed-exit activities at the bed end such as cleaning and caregivers walking by. 

Fig. 4. (Color online) Prototype of bed-exit system: (a) components of outer case; (b) circuit components; (c) 
interior view after assembly; and (d) front view of prototype.

(a)

(b)

(c)

(d)
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4.1 Experiments

 Our experiments were conducted in a ward environment and involved 26 bed-related 
activities, each of which was repeated 240 times. The 26 activities can be divided into three 
classes: bed exit, in bed, and caregiving. The first two classes focus on the activities of the 
patient, while the third class corresponds to the activities of the caregiver. 
 Table 2 lists the experimental results of six bed-exit activities. In the experiment, a complete 
bed-exit activity indicates that a user enters the bed from one side and exits from the same or the 
other side. Figure 5 shows a sequence of snapshots for the bed-exit scenario of right enter, left 
exit. In the bottom three snapshots from right to left, the female subject leaves the bed in 
accordance with the state transactions (i.e., Getup, Bedside, and Bed-exit) in the FSM described 
in Sect. 2.2. In Fig. 5, it can be clearly seen that the proposed prototype is attached to a mobile 
stand and can be set at the head of the bed in a post-installation manner accordingly. Since the 
aim of this study is to observe the bed-exit behavior, the correct rate is used to evaluate the 
successful detection of bed exit. On the other hand, the detection of bed entry as a bed-exit event 
is recorded as a detection error. As shown in Table 2, an average correct rate of more than 99% 
was observed for the six bed-exit activities. Among the bed-exit activities, the “roll right to exit 
bed” activity has a slightly lower correct recognition rate than the others. Inspecting the state 
transactions for the failed “roll right to exit bed” activities suggested that the IR array may not 
capture the body rolling movement. Figure 6 presents a sequence of snapshots of this “roll right 

Table 2
Statistical results of six bed-exit activities.
Activity (Bed exit) Corr. rate (%) Err. rate (%)
Left enter, left exit 100 (exit) 0 (enter)
Left enter, left exit 100 (exit) 0 (enter)
Left enter, right exit 100 (exit) 0 (enter)
Right enter, left exit 100 (exit) 0 (enter)
Roll left to exit bed 100 —
Roll right to exit bed 99.17 —

Fig. 5. (Color online) Bed-exit activity: right enter, left exit. Images are arranged in clockwise order from top left.
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to exit bed” activity. In the second snapshot from the left, the subject rolls her body to get up 
from the bed, and then the bed-exit prototype omits the Getup state and jumps to the Bedside 
state. Consequently, the bed-exit detection fails. To reduce detection failure for rolling activities, 
we suggest the deployment of the bed-exit prototype lower than the shoulder of the subject. On 
the other hand, the bed-exit prototype should be higher than the nose of the subject lying down 
on the bed.
 Table 3 presents the results of non-bed-exit activities including four caregiver activities and 
20 everyday body activities. Figure 7 shows the snapshots of the caregiver activity “help out of 
bed” from the right side. In Fig. 7, the caregiver stands on the right side of the bed during the 
entire activity, and the caregiver’s behavior can be filtered out by the second transaction 
condition defined in Table 1 for the Getup and Bedside states (i.e., position matrix [1 0 0 0 0 1] 
with H2 = 0). The second transaction condition ensures that the bed-exit event is that of the 
subject itself, and ignores the activities associated with caregiving. Additionally, the activities 
“left in, left out” and “right in, right out” indicate that the caregiver walks to near the bed and 
then walks away after finishing the caregiving service. From Table 3, it can be seen that (1) the 
caregiver activities have a 0% detection error rate, and (2) most body activities are successfully 
detected as non-bed-exit behavior, except for a few right/left-hand fetch events from the belly. 
Figure 8 shows a sequence of snapshots of a right-hand fetch activity. By inspecting the hand 
fetch event, it was found that the slower hand movement of reaching out might be regarded as a 
body movement associated with leaving the bed (see the middle two images in Fig. 8), and the 
resultant detection error rate is 0.83%.

4.2 Clinical survey 

 To further examine the effectiveness of the LOT-based bed-exit system, the prototype bed-
exit monitor presented in Fig. 4 is deployed at Changhua Christian Hospital, Taiwan. In this pilot 
study, a total of 55 volunteers (22 patients and 33 caregivers) complete a questionnaire survey 
after experiencing the proposed bed-exit system. 
 As shown in Fig. 9(a), 89% of participants consider the LOT-based bed-exit system to be 
effective, while only 6% indicate that this bed-exit system does not meet their expectations. On 
the other hand, Fig. 9(b) shows the reviews of caregivers for the proposed prototype. 89% of the 
caregivers involved in the study agree that the LOT-based bed-exit system can reduce their 

Fig. 6. (Color online) Bed-exit activity: roll right to exit bed. Images are arranged from left to right.
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burden in caring for patients with high fall risks, and only 3% of them indicate that the operation 
of such a bed-exit monitor might become an additional burden in practice. This implies that it is 
essential to design a good user interface for the commercialization of the prototype. From Fig. 
9(c), 90% of participants agree that the prototype quality is good, with 10% of them giving a 
neutral response. This result can be useful in improving the prototype implementation. Finally, 
87% of participants are satisfied with the innovation of the LOT-based bed-exit system [Fig. 
9(d)]. To conclude, most participants agree that the proposed LOT prototype has a good design 
and satisfactorily detects bed-exit behavior.

Table 3
Statistical results of 20 non-bed-exit activities: four cases are for caregiver and 16 cases are body activities.
Category Activity Err. rate (%) Category Activity Err. rate (%)

Caregiver

Help out of bed 
(left side) 0

Body

Right-side left-hand 
fetch (chest) 0

Help out of bed 
(right side) 0 Right-side right-hand 

fetch (chest) 0

Left in, left out 0 Left-side right-hand 
fetch (chest) 0

Right in, right out 0 Get up, left-side 
left-hand fetch 0

Body

Raise right hand 0 Get up, right-side 
right-hand fetch 0

Raise left hand 0 Wave left 0
Pull quilt 0 Wave right 0

Left-side left-hand 
fetch (belly) 0.83 Waving both hands 0

Right-side right-hand 
fetch (belly) 0.83 Turn over 0

Left-side left-hand 
fetch (chest) 0 Get up and lie down 0

Fig. 8. (Color online) In-bed activity: right-side right-hand fetch (belly). Images are arranged from left to right.

Fig. 7. (Color online) Caregiver activity: help out of bed (right side). Images are arranged from left to right.
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5. Conclusions

 We studied LOT to detect human behavior in a limited region and presented a LOT-based 
system using an IR sensor array to detect bed-exit behaviors. Specifically, the IR sensor array 
comprises multiple reflective IR sensors to track spatial and temporal user activities in a 
continuous manner. Compared with wide-range object tracking, the LOT system can be more 
adaptable to privacy requirements and post-installation deployment. To provide reliable bed-exit 
behavior recognition, an FSM model is proposed with an IR array of six reflective sensors. In 
the proposed FSM model, the bedside condition is essential in detecting the caregiver activity. 
The time-based examination in FSM can also be effective for differentiating body activities 
from bed-exit activities. Consequently, a bed-exit event is detected via continuous FSM state 
transactions without interference due to caregiver and body activities. 

Fig. 9. (Color online) Questionnaire results: (a) effectiveness of LOT system; (b) burden reduction of caregivers; 
(c) prototype quality; (d) innovation of LOT system.

(a) (b)

(c) (d)
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 The proposed system was implemented as a product prototype and its performance was 
evaluated in a realistic ward environment. The user activities under consideration consisted of 
six bed-exit activities, four caregiver activities, and 16 everyday body activities. The 
experimental results show that this LOT-based system can achieve a correct bed-exit detection 
rate of more than 99%, and a questionnaire study indicated that 89% of participants who 
experienced the prototype consider it to be effective in preventing fall events. Future tasks 
include reducing the detection error rate using a multidimensional sensor array and adding more 
activities in the experiments.
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