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 The precision of the machining tool in computer numerical control (CNC) machining is 
affected by several factors. For example, cutting parameters considerably affect machining 
accuracy and tool wear. Tool wear results in the manufacture of substandard products. Therefore, 
predicting tool wear is crucial in CNC machining. In this study, we proposed a backpropagation 
neural network (BPNN) to predict tool wear. In machine learning, backpropagation is a widely 
used algorithm for training artificial neural networks. The proposed BPNN considered the 
variation of tool wear with different cutting parameters, such as the spindle speed, feed, cutting 
depth, and cutting time. The experimental results revealed that the root mean square error of the 
BPNN prediction model was less than that of the linear regression prediction model. 
Furthermore, the proposed model achieved a coefficient of determination (R2) of 0.9964, which 
indicated that the BPNN model can accurately predict tool wear. 

1. Introduction

 Several measurement techniques have been used to indirectly predict tool wear.(1) For 
decades, piezoelectric sensors and dynamometers have been widely used to collect data and 
monitor cutting processes. Previous studies on output response methods have mainly employed 
dynamometers, accelerometers, acoustic emission, and current sensors. Currently, tool wear 
prediction is performed using regression analysis, neural networks (NNs), and other methods. 
Among these, NNs are being increasingly adopted in machine tool wear prediction. Advanced 
sensors, such as current sensors, dynamometers, infrared sensors, and ultrasonic sensors, can 
help monitor machine tool processing parameters such as feed rate, spindle speed, and cutting 
depth.(2–6)

 Linear regression is a regression analysis technique that models the relationship between one 
or more independent and dependent variables by using the least squares function (also known as 
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the linear regression equation). Such a function is a linear combination of one or more model 
parameters (that is, regression coefficients). In linear regression, data are modeled using linear 
predictive functions. Unknown model parameters are then estimated. Patra et al.(7) investigated 
the variation of tool wear under various cutting conditions. Furthermore, they investigated the 
variation of the thrust force with changes in the peck drilling parameters, such as an increase in 
the number of holes at different feeds and a decrease in the drilling speed. Typically, NN models 
exhibit a lower prediction error than regression models. Jose et al.(8) used the effects of tool wear 
and surface roughness during the turning process on acoustic emission and force sensors, using 
linear regression models to predict tool wear. Patra et al.(9) compared artificial NN (ANN) and 
regression models and developed a microdrilling monitoring system with a three-axis 
accelerometer, data acquisition mechanism, signal processing modules, and ANNs. Ozel and 
Karpat(10) proposed an NN model to predict the surface roughness and tool flank wear under 
various cutting conditions during hard turning. Linear regression models have also been 
developed to determine process-specific parameters.
 Many scholars have used ANNs to predict tool wear. Drouillet et al.(11) proposed a remaining 
useful life technique for predicting tool wear on the basis of machine spindle power values by 
using NNs. Chang et al.(12) proposed a prediction system based on a binary NN (BNN) algorithm 
to estimate the wear of a turning tool. The input parameters of the BNNs were cutting speed, 
feed rate, and material removal rate. Akarslan and Hocaoglu(13) categorized tools as undamaged, 
damaged but usable, and damaged and broken, and used these categories as feature vectors. Guo 
and Mao used an ANN as a classifier and determined that during the milling process, wear in 
the primary stage indicates that the tool is weak.(14)  They subsequently determined that wavelet 
NNs can effectively handle various signals with different frequencies. Martinsen et al.(15) used 
ANNs for sensor signal analysis as a replacement for the traditional repeated test process 
monitoring method. Gong and Yang(16) developed a model based on ANN prediction theory to 
investigate the relationship between input and output parameters. Gao et al.(17) investigated the 
influence of experimental design on modeling of the tool condition monitoring system based on 
various NNs. Kaya et al.(18) proposed an effective strategy based on ANNs to estimate tool wear. 
Hazza et al.(19) experimented with a ceramic cutting tool heat-treated in accordance with AISI 
4340 and with a hardness of 60 hardness Rockwell C (HRC) scale and proposed a novel model to 
predict tool life for various cutting speeds, feed rates, depths of cut, and rake angles. Luetzig et 
al.(20) improved the performance of data fusion algorithms to achieve accurate final flank wear 
estimates. Regular tests of a network demonstrated that their algorithm can provide reliable final 
flank wear estimates. Sanjay et al.(21) estimated tool wear by using statistical analysis and 
various NN structures.
 In this study, we proposed a backpropagation neural network (BPNN) to predict tool wear. 
The proposed BPNN considered the variation of tool wear with different cutting parameters, 
such as the spindle speed, feed, cutting depth, and cutting time. The approach in this study offers 
the following advantages: 1) The training data of BPNN can be obtained by milling experiments 
using an orthogonal table. Simultaneously, tool wear results can be obtained by recording the 
tool length before and after milling. 2) The BPNN parameters are selected using an orthogonal 
experimental design. 3) The root mean square error (RMSE) of the BPNN models was smaller 
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than that for linear regression and R2 was larger than that for linear regression. The remainder of 
this paper is organized as follows. Section 2 introduces the tool wear of a computer numerical 
control (CNC) machine. The tool wear prediction is described in Sect. 3. Section 4 presents the 
prediction results of the BPNN model. Section 5 presents the conclusions and future research 
directions.

2. Tool Wear of CNC Machine

2.1 Cutting force

 The cutting force between the tool and the workpiece is a vital factor that directly affects tool 
wear. When the tool cuts into the workpiece, the applied force cuts chips of the workpiece, which 
are then removed from the workpiece surface, as depicted in Fig. 1.

2.2 Causes of tool wear

 The gradual blunting of a tool to the point that it cannot cut the workpiece is called tool wear. 
If a worn tool is used, vibration and noise are generated, which cause an uneven cutting force 
and temperature. Therefore, worn tools must be replaced with new tools to ensure cutting 
precision and quality. Tool wear is categorized into damage and wear. The types and descriptions 
of tool damage and wear are presented in Table 1.

2.3 Stages of tool wear

 Tool wear is divided into the following three stages (Fig. 2). Initial wear stage: The tool 
surface roughness or surface structure is not resistant to wear. Therefore, the cutting starts faster 
in the short time of cutting. Normal wear stage: The tool is slightly worn and its surface 
gradually becomes smooth. The cutting force of the cutting surface is uniform. Therefore, wear 
is slow. Intense wear stage: High friction causes a sharp increase in the tool temperature. The 
contact between the tool and the workpiece reduces considerably. The blade becomes dull and 
loses its cutting ability.

Fig. 1. Schematic of the cutting force.
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2.4 Cutting parameters and formula

 The cutting parameters should be adjusted according to the cutting conditions, and the 
parameters indirectly affect the quality of cutting. The cutting parameters are as follows.
 The depth of cut is the thickness of the tool tip that is milled into the workpiece; if the depth 
of cut is too large, it may cause extreme tool wear and even tool breakage. The width of the 
workpiece, tool diameter, number of blades, and cutting width are the other vital parameters of 
the tool. The cutting depth dc, cutting width dw, diameter of tool D, and workpiece are illustrated 
Fig. 3. The cutting speed depends on the cutting speed of the cutting edge relative to the 
workpiece, which is determined by the tool diameter and tool revolutions per minute.

Table 1
Types of tool damage and wear.
Tool damage/wear type Description

Damage

Cutting edge or tip collapse
Occurs because of the unsuitable material composition of the tip and the 
hardness of the workpiece. A large rake angle results in low cutting edge 
strength, which causes the tool to lose its cutting ability.

Blade or tool break Occurs when the cutting force is too large or machining is performed 
inadvertently. The broken tool cannot be used.

Cutting plastic deformation Typically occurs when the portion to be cut is large and the material is 
hard.

Thermal break of tool Occurs because of the repeated thermal expansions and contractions 
caused by the cutting friction.

Wear

Material wear Attributed to fine particles with high hardness in the processing materials, 
which result in the formation of grooves on the surface of the tool.

Oxidative wear As the temperature increases, the oxide generated on the tool surface is 
cut and rubbed.

Diffusion wear
Caused by the interdiffusion of chemical elements of the workpiece and 
tool during high-temperature cutting. An unsuitable tool composition 
accelerates tool wear.

Cold welding wear
A large cutting force and friction exist between the workpiece and the 
front and back flanks, which is generally more serious at medium cutting 
speeds.

Fig. 2. (Color online) Stages of tool wear.
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 The cutting speed is calculated as follows:

 ( ) ( )m / min
1000C

D N
V

π⋅ ⋅
= , (1)

where Vc is the cutting speed (m/min), D is the tool diameter (mm), and N is the spindle speed 
(rpm).
 The feed speed is the speed at which the spindle moves toward the workpiece and is calculated 
as follows:

 F f z N= ⋅ ⋅ , (2)

where F is the feed rate (mm/min), f is the feed rate per blade (mm/min), z is number of blades, 
and N is the spindle speed (rpm).

3. Tool Wear Prediction

3.1 BPNN

 In this study, a three-layer BPNN for tool wear prediction was proposed (Fig. 4). The input 
layer had four neurons, namely, the feed, spindle speed, cutting depth, and time. The numbers of 
neurons in the hidden layer were determined to be 20, 25, and 30. The output layer had one 
neuron, namely, tool wear.
 The procedure of the proposed BPNN is as follows:
 First, determine the number of input layer neurons xm, the number of hidden-layer neurons 
ho, and the number of output layer neurons yn.

Fig. 3. (Color online) Coding method of chromosomes in GA.
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 Then, randomly set the weight value and the bias of the NN. Here, wij is the weight value 
between the input and hidden layers, wjk is the weight value between the hidden and output 
layers, θhO is the bias of the hidden layer, and θyn is the bias of the output layer.
 Calculate the output value of the hidden layer as follows:

 
1

_
M

O ij m o
m

net h w x hθ
=

= × −∑ , (3)

 _
1

1 oo net hh
e−

=
+

, (4)

where net_ho is the weighted product sum of the number of neurons in the hidden layer, M is the 
total number of input layer neurons, and ho is the output value of the number of neurons in the 
hidden layer and is a nonlinear transformation of the input.
 Calculate the output value of the output layer using the following formulas:
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where net_yn is the weighted product sum of the number of neurons in the output layer, O is the 
total number of hidden-layer neurons, and yn is the NN output value.
 The deviation of the output layer is calculated as follows:

 δyn = yn · (1−yn) · (Tn−yn), (7)

Fig. 4. Proposed BPNN architecture.
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where δyn is the deviation of the number of neurons in the output layer and indicates the 
deviation between yn and the target output value Tn.
 Calculate the deviation of the hidden layer as follows:

 ( )
1

1
N

o o o jk n
n

h h h w yδ δ
=

= ⋅ − ⋅ ⋅∑ , (8)

where δho is the deviation of the number of neurons in the hidden layer and N is the total number 
of output layer neurons. This means that the deviation of the output layer is backpropagated to 
the hidden layer to calculate the deviation.
 Calculate the weighted correction value and the bias correction amount between the input 
layer and hidden layer using the formulas

 η δ α∆ = ⋅ ⋅ + ⋅ ∆ , (9)

 θ η δ α θ∆ = − ⋅ + ⋅∆ , (10)

where Δ is the weighted correction value between input layer neurons and hidden layer neurons, 
Δθ is the bias correction amount of hidden layer neurons, η is the learning rate, and α is the 
inertia factor.
 Calculate the weighted correction amount and the bias correction amount between the hidden 
layer and output layer using the formulas

 η δ α∆ = ⋅ ⋅ + ⋅ ∆ , (11)

 θ η δ α θ∆ = − ⋅ + ⋅∆ , (12)

where Δ is the weighted correction value between the hidden layer neurons and output layer 
neurons, Δθ is the bias correction amount of the output layer neurons, η is the learning rate, and 
α is the inertia factor. Update the weight value between the input layer and the hidden layer using 
the formula

 wij = wij + Δwij. (13)

 Update the bias value of the hidden layer using the expression

 o o oh h hθ θ θ= + ∆ . (14)

 Update the weight value between the hidden and output layers using the expression

 jk jk jkw w w= + ∆ . (15)
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 Update the bias value of the output layer using

 . n n ny y yθ θ θ= + ∆  (16)

 Calculate the square error of the output neurons using

 21 ( )
2 n n

n
E T y= −∑ , (17)

where E is the square error of the output neurons, Tn is the target output value, and yn is the NN 
output value. After a learning cycle, the smaller the value of E, the better the performance of NN 
learning. A small error between the NN output value and target output value is desirable.

3.2 Linear regression

 Linear regression typically predicts continuous variables, one or more independent variables, 
and dependent variables. Then, the least squares method is used to minimize the error of linear 
regression. The relationship between two variables is determined by fitting a linear equation. In 
general, just finding a straight line can predict the direction of the data.
 Linear regression is categorized into simple linear regression and multivariate linear 
regression. Simple linear regression has one independent variable, whereas multivariate linear 
regression has more than one independent variable. Both regression types are used to investigate 
the relationship between the independent variable (X) and the dependent variable (Y).
 Simple linear regression is expressed as follows:

 1 1Y a b X ε= + + , (18)

where a is a constant, b1 is the regression coefficient, and ε is the error value.
 Multivariate linear regression is expressed as follows:

 1 1 2 2 k kY a b X b X b X ε= + + + + + , (19)

where a is a constant, b1 ··· bk are the regression coefficients, and ε is the error value.
 Multivariate variable data are calculated using linear regression. In regression analysis, the 
least squares method is most often used to determine the best match of data, and the sum of 
squared errors between the predicted data and the actual data are minimized.
 The formula used in the least squares method is as follows:

 ( ) 2

1
, ( )

n

i i
i

Q a b Y a bX
=

= − −∑ , (20)
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where n is the total amount of data, a is a constant, b is the regression coefficient, Xi is the 
independent variable of linear regression, and Yi is the dependent variable of linear regression.
 In this study, a multivariate linear regression was performed for the parameters of tool wear, 
and four independent variables and one dependent variable were proposed. The independent 
variables are labeled X1 to X4.
 The tool wear multivariate linear regression can be expressed as follows:

 1 1 2 2 3 3 4 4Y a b X b X b X b X ε= + + + + + , (21)

where Y is the tool wear, X1 is the feed, X2 is the spindle speed, X3 is the cutting depth, X4 is the 
time, and ε is the error value.

4. Results and Discussion

4.1 Prediction results of BPNN model

 The training data of the BPNN are established using an orthogonal table L24 design. In the 
process of milling, the tool wear can be obtained from the difference between the tool length 
before and after actual milling experiments. Finally, the training data can be built by recording 
the tool wear. The input of the BPNN is the equipment parameters of the CNC machining during 
milling including the feed, spindle speed, cutting depth, and time. Furthermore, the output of the 
BPNN is the measured tool wear in milling experiments. The BPNN target value (Tn) and the 
BPNN output predicted value (Yn) of each training data were analyzed, and the RMSE between 
the calculations was determined. 
 The RMSE is the square root of the mean square error (MSE) and is used to determine the 
accuracy of a prediction, that is, the degree of deviation between the predicted and target values. 
The smaller the value, the higher the accuracy.
 The RMSE is calculated as follows:

 21 (  ) ,
N

n n
n

RMSE T Y
N

= −∑  (22)

where N is the total number of data. The parameters of the BPNN are listed in Table 2.
 Table 3 shows the prediction results obtained using the BPNN. The parameters in the BPNN 
are set to the number of iterations (g): 500000, learning rate (η): 0.5, inertia factor (α): 0.8, and 

Table 2
Initial parameters of BPNN.
Number of iterations (g) 100000 200000 500000
Learning rate (η) 0.1 0.2 0.5
Inertia factor (α) 0.5 0.8 —
Number of hidden-layer neurons (Hn) 20 25 30
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Table 3
Prediction results using BPNN.
No. F S C T Tn Yn Error

1 3000 5000 0.3 60 0.0500 0.0469 −0.0031
2 3000 5000 0.5 60 0.0600 0.0616 0.0016
3 3000 5000 1 60 0.1000 0.0997 −0.0003
4 3000 5000 0.3 30 0.0200 0.0250 0.0050
5 3000 5000 0.5 30 0.0300 0.0284 −0.0016
6 3000 5000 1 30 0.0400 0.0384 −0.0016
7 3000 8000 0.3 60 0.0600 0.0605 0.0005
8 3000 8000 0.5 60 0.0800 0.0802 0.0002
9 3000 8000 1 60 0.0900 0.0882 −0.0018

10 3000 8000 0.3 30 0.0300 0.0303 0.0003
11 3000 8000 0.5 30 0.0500 0.0468 −0.0032
12 3000 8000 1 30 0.0600 0.0618 0.0018
13 4000 5000 0.3 60 0.0500 0.0524 0.0024
14 4000 5000 0.5 60 0.0800 0.0798 −0.0002
15 4000 5000 1 60 0.1000 0.0985 −0.0015
16 4000 5000 0.3 30 0.0400 0.0377 −0.0023
17 4000 5000 0.5 30 0.0500 0.0493 −0.0007
18 4000 5000 1 30 0.0600 0.0603 0.0003
19 4000 8000 0.3 60 0.0800 0.0794 −0.0006
20 4000 8000 0.5 60 0.1300 0.1286 −0.0014
21 4000 8000 1 60 0.1500 0.1489 −0.0011
22 4000 8000 0.3 30 0.0200 0.0188 −0.0012
23 4000 8000 0.5 30 0.0300 0.0345 0.0045
24 4000 8000 1 30 0.0700 0.0685 −0.0015

Fig. 5. (Color online) Learning curve (g: 500000, η: 0.5, α: 0.8, Hn: 20).

number of hidden-layer neurons (Hn): 20. Figure 5 shows that the learning curve has decreasing 
RMSE with increasing number of iterations. The curve illustrates the convergence process and 
mean square error.
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 According to the prediction results in Table 3, the target value was similar to the BPNN 
output value. The measured value of the tool setter used in this experiment was the third digit 
after the decimal point. Therefore, a small error value was desired. The variation of the target 
and predicted values is depicted in Fig. 6.

4.2 Comparison of BPNN parameters

 For the BPNN parameters, the variations in the RMSE of the number of iterations (g), 
learning rate (η), inertia factor (α), and number of hidden-layer neurons (Hn) are presented in 
Table 4.
 If the number of hidden-layer neurons is small, the error value will become large during the 
learning process. In contrast, while the number is becoming larger, the error value will decrease, 
which causes the convergence speed to also decrease.
 If the learning rate is too low, then network vibration can be avoided. However, low learning 
rates lead to slow convergence. If the learning rate is too large, then the target value can be 
approached swiftly, but too much correction can occur, which can cause the network to vibrate, 
to be unable to converge, or even to diverge.
 The inertia factor is the variation from the previous weighted value to the next weighted 
value. Typically, the value is between 0 and 1. The purpose of the inertia factor is to keep the 
weighted value variation of the neural network in the same direction.
 According to the experimental results in Table 4, the RMSEs of experiments 16, 20, and 23 
are less than 0.02. The common point inertia factor and the number of hidden-layer neurons in 
these experiments are 0.8 and 20, respectively.
 Next, we analyzed the RMSE variation for the four parameters (Figs. 7–10). In the 
experiment, 100000, 200000, and 500000 iterations were performed. The learning rate, inertia 
factor, and number of hidden layers were 0.5, 0.8, and 20, respectively. In Fig. 7, as the number of 
iterations increased, the RMSE decreased.

Fig. 6. (Color online) Target and predicted results of the BPNN.
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 Here, the learning rates of the experiment were 0.1, 0.2, and 0.5. The iterations, inertia factor, 
and number of hidden layers were 500000, 0.5, and 20, respectively. Figure 8 shows the RMSE 
results obtained using various learning rates, and the RMSE decreases as the learning rate 
increases.

Table 4
RMSE results using various parameters in BPNN.

No. g η α Hn RMSE
1 100000 0.1 0.5 20 0.043160783
2 100000 0.1 0.8 20 0.040845023
3 100000 0.2 0.5 20 0.041291525
4 100000 0.2 0.8 20 0.039677893
5 100000 0.2 0.5 25 0.041327163
6 100000 0.2 0.5 30 0.041371707
7 100000 0.5 0.8 20 0.031305923
8 100000 0.5 0.5 20 0.040108104
9 200000 0.1 0.5 20 0.041789529

10 200000 0.1 0.8 20 0.039590307
11 200000 0.2 0.5 20 0.040648152
12 200000 0.2 0.5 25 0.040710524
13 200000 0.2 0.5 30 0.040947384
14 200000 0.2 0.8 20 0.032222959
15 200000 0.5 0.5 20 0.035253436
16 200000 0.5 0.8 20 0.013551621
17 500000 0.1 0.5 20 0.040009647
18 500000 0.1 0.8 20 0.032885653
19 500000 0.2 0.5 20 0.033029596
20 500000 0.2 0.8 20 0.013749464
21 500000 0.2 0.5 25 0.036251435
22 500000 0.2 0.5 30 0.035760352
23 500000 0.5 0.8 20 0.008338854
24 500000 0.5 0.5 20 0.020994665

Fig. 7. (Color online) RMSE results using various numbers of iterations.
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Fig. 8. (Color online) RMSE results using various learning rates.

 In this experiment, the inertia factor was varied (0.5 and 0.8) and the number of iterations, 
learning rate, and number of hidden layers were fixed at 500000, 0.5, and 20, respectively. 
Figure 9 shows the RMSE results obtained using various inertia factors, and the RMSE 
decreases as the inertia factor increases. As shown in Figs. 8 and 9, when the values of the 
learning rate and the inertia factor gradually increase, the RMSE will gradually decrease.
 In this experiment, the number of hidden-layer neurons was varied (20, 25 and 30). The 
number of iterations, learning rate, and inertia factor were fixed at 200000, 0.5, and 0.5, 
respectively. Figure 10 shows that the number of neurons in the hidden layer did not considerably 
influence the RMSE. Too many neurons may cause divergence, which in turn increases errors. 
In the BPNN parameter experiment, the number of hidden layer neurons has the least influence 
on RMSE during the learning process.
 A comparison of the RMSE and coefficient of determination (R2) for the BPNN and linear 
regression is presented in Table 5. In statistics, R2 is used to measure the difference between 
dependent and independent variables to explain the relationship between the target and predicted 
values. Typically, the value is between 0 and 1. If the value is closer to 1, then the predictive 
ability of the system is better. R2 is calculated as follows:

 
2

2
2

( )1 1
( )

res n n

tot n

SS T YR
SS T T

∑ −
= − = −

∑ −
, (23)

where SSres is the sum of the squares of the residuals of the target and predicted values, SStot is 
the error between the target and average values, Yn is a predicted value, Tn is a target value, and T 
is the average of the target values. 
 As shown in Table 5, in which the prediction results of linear regression and the BPNN are 
compared, the proposed BPNN achieves a small RMSE (0.008338854) and a large R2 (0.9964). 
Therefore, the experimental results show that the BPNN is better than linear regression. 
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5. Conclusions

 In this study, tool wear prediction was performed using BPNN and multiple linear regression 
models. In tool milling, tool wear is affected by the feed, spindle speed, cutting depth, and time. 
The BPNN model achieved excellent prediction with 500000 iterations, a learning rate of 0.5, an 
inertia factor of 0.8, and 20 hidden-layer neurons. The RMSE was smallest with these values.

Table 5
Comparison of prediction results using linear regression and BPNN.
Model RMSE R2

Linear regression 0.021215796 0.6422
BPNN 0.008338854 0.9964

Fig. 10. (Color online) RMSE results using various numbers of hidden-layer neurons. 

Fig. 9. (Color online) RMSE results using various inertia factors.
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RMSE and R2 of the BPNN model were smaller and larger than those of linear regression, 
respectively. Therefore, the BPNN model exhibited excellent tool wear prediction.
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