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 Mental stress is a problem that people may often face. Although there are some 
psychobiological stress measurement methods based on electroencephalogram (EEG) signals, 
these methods use expensive medical equipment to gather multichannel signals and cannot 
measure stress in real time in daily life. Many novel wearable devices now have a sensor for 
physiological signal detection, which helps people manage health conditions. Several studies 
have recently investigated the application of wearable devices to stress detection. In this paper, 
an approximate model based on an EEG signal is designed for measuring stress. To establish the 
connection between the EEG and electrocardiogram signals, we use wearable devices to 
simultaneously collect the two types of data from volunteers. The exponentially weighted 
moving average is used to smooth out the EEG power spectrum features (α, β, etc.). An EEG-
based feature vector is constructed to predict stress scores, with polynomial regression used to 
build the model. The experimental results show that the proposed method achieves a symmetric 
mean absolute percentage error of 17.44 and a root mean square error of 11.26.

1. Introduction

 Modern life is full of stress. Anxiety, insomnia, and depression have become problems that 
plague many people. Appropriate stress helps us accomplish our goals, but prolonged stress is 
not conducive to our health.(1) Previous works have proposed methods to detect stress that use 
physiological signals, such as electroencephalogram (EEG) signals, electrocardiogram (ECG) 
signals, and galvanic skin response (GSR), to measure psychological stress more objectively. 
Stress level identification was a common task in these studies. However, signals obtained in the 
laboratory are different from those resulting from stress in daily life.(2) Nowadays, some people 
use wearable devices almost every day. Many of these devices have a sensor to collect 
physiological data, making them ideal instruments for stress detection studies.(3)

 The functioning of the heart can reveal health-related information. Since the autonomic 
nervous system affects the heart’s activity, heart-related features can be used to measure stress. 
Stress detection research based on ECG signals is usually a classification task, including two 
classifications (stressed, relaxed) or three classifications (low, medium, high stress). The support 
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vector machine (SVM), k-nearest neighbors (kNN), neural networks, and decision trees are 
mostly used in these tasks.(4–6) Some researchers have studied the problem of stress detection in 
a daily life environment. Sriramprakash et al. used GSR and ECG sensors to identify stress in 
working individuals.(7) With the development of wearable devices, many smart bands now have 
real-time stress assessment functions, such as the Apple Watch, Huawei Watch, and Fitbit. These 
commercial devices record how stress changes with time. However, the electrodes of these 
devices are far from the heart, causing the severe decay of the ECG signals.
 Brain activity is also affected by stress. Researchers have extracted and selected features 
from EEG signals and used a machine learning algorithm to build a model of brain activity. 
Some works reviewed stress level recognition.(8–10) Sandulescu et al. studied the application of 
wearable devices in stress detection.(11) Minguillon et al. collected the prefrontal relative gamma 
power to evaluate the level of stress. Since EEG signals have a higher temporal resolution than 
the heart rate (HR), they are more suitable for real-time stress detection implementation.(12,13) 
These methods all use multichannel signals. However, wearable devices are usually low-power 
devices and are not capable of providing multichannel data. Moreover, to the best of our 
knowledge, recent studies have mainly focused on classifying stress into two or three levels, not 
stress scores, in other words, a continuous variable indicating the stress. Therefore, it is desirable 
to develop a stress detection method that uses only a few electrodes to reduce the amount of 
computation and determine stress scores using EEG features.
 For stress detection, if the same person’s EEG and ECG data are collected simultaneously, 
there must be a correlation between the two signals. From previous studies, we also know that 
the prefrontal cortex is affected by stress, and the frequency domain features of EEG signals can 
detect this effect. Therefore, a well-trained ECG stress assessment model could be used to 
generate labels for the EEG data, that is, to build an approximate model based on EEG features. 
In this work, we investigated a method of using biosensors to collect EEG and ECG signals, and 
built a model that can present mental stress as a score.
 
2. Method

 In this study, we propose a stress assessment method based on the frequency domain features 
of frontal EEG data that can be employed in a wearable device. Our approach uses commercial 
wearable sensors that can collect data in a daily life environment. In this section, the architecture 
and algorithm of the method are described.
 Figure 1 shows the architecture of the proposed method. The entire training process is 
divided into four stages: data collection, preprocessing, feature selection, and training.

2.1 Data collection

 To obtain a more precise ECG signal, the user should place the sensor closer to the heart. 
Consequently, the sensor should be mounted on a chest strap. In this work, a wearable chest strap 
and brain band [Fig. 2(a)] were used to collect biological signals, and an Android application 
[Fig. 2(b)] was developed to gather data. Both wearable devices use dry-electrode and CR2032 
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batteries. The sensors themselves extract the features, and the feature information is broadcast 
via Bluetooth every 6 s. When the sensors are placed on the body, the sensors start sampling and 
processing the signals. The amplitudes of the power spectrum features α, β, δ, θ, and γ can be 
acquired from the EEG sensor without any preprocessing of the raw data. These features are 
sufficient for the stress assessment task. Similarly, the HR, low frequency (LF, 0.04–0.15 Hz) 
component, high frequency (HF, 0.15–0.4 Hz) component, standard deviation of normal to 
normal (SDNN), total power (TP), and stress score can be acquired from the ECG sensor. 
 As shown in Fig. 1, EEG and heart rate variability (HRV) data are used to train the model 
during the training phase. EEG feature data must be paired with a stress score to establish the 
relationship between EEG and ECG data. Although the two sensors broadcast data at the same 
rate, they are not synchronized. The Android application stores the stress score in a cache to deal 
with this problem and updates the stored variables every time new data is received. When EEG 
data is received, the newest stress score is paired with the data. In the inference stage, only the 
EEG feature is needed to predict the stress.

Fig. 1. (Color online) System architecture.

Fig. 2. (Color online) (a) EEG and ECG sensors. (b) Android application used to collect and store data.

(a) (b)
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2.2 Preprocessing

 The EEG signal is susceptible to noise. Most methods preprocess the raw signal to remove 
blinking, eye movement, and the electromyogram (EMG) to obtain clear data. In this study, 
these tasks are performed by a sensor. However, the amplitude of the frequency domain features 
still fluctuates greatly. It is necessary to preprocess the features data to make it smoother. The 
moving average (MA) is a common algorithm used to filter out noise, leading to a lag. As the 
sliding window increases, the lag increases, hindering real-time stress calculation. Therefore, 
the exponentially weighted moving average (EWMA) algorithm is used to smooth out the 
amplitude of the features data. Two preprocessing steps are employed: (i) remove outliers to 
reduce the impact on the average and (ii) use the EWMA algorithm to smooth the signal and 
reduce the lag.
(i) Calculate the sample variance s and average x on the training set, and limit the maximum and 
minimum values of the data to x s± , as shown in Eqs. (1)–(3).
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(ii) Smooth with EWMA. The EWMA algorithm is a widely used smoothing algorithm in the 
fields of finance and engineering. The weight of the data can be changed by adjusting the 
hyperparameter α to improve the robustness of the model. A smaller α takes more recent data 
into consideration. Equation (4) shows the EWMA.

 
2

1 2 0
2

(1 ) (1 ) ... (1 )
1 (1 ) (1 ) ... (1 )

t
t t t

t t
x x x xv α α α

α α α
− −+ − + − + + −

=
+ − + − + + −

  (4)

Here, α is the decay coefficient, xt is the amplitude of the feature at time t, and vt is the average.

2.3 Construction of feature vector

 The EEG signal contains rich features. From previous studies, we know that brain activity is 
affected by mental stress. α waves are related to a relaxed and calm state, and β waves to stress 
and excitement. Therefore, α and β are selected to construct the feature vector as follows:
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 2 21 α β αβ α β =  F . (5)

2.4 Model

 Algorithms running on wearable devices must not be computation-intensive in order to 
extend their battery life. In some studies, deep neural networks have been used to detect 
stress.(14,15) These models are complex and have a too heavy computational load for a wearable 
device with a battery. Moreover, our aim is to predict a continuous stress value rather than a 
stress level, and therefore classification algorithms such as SVM, kNN, and decision trees are 
excluded. For these reasons, polynomial regression is selected to build the model. Equation (6) 
shows our model:

 Stress = TFw , (6)

where 0 1 5[ ... ]ω ω ω=w .

3. Experiment and Results

3.1 Dataset

 A total of 23 healthy subjects between the ages of 20 and 40 voluntarily participated, and they 
were asked not to exercise for 24 h before the experiment. Each volunteer was assigned a 
headband and a chest strap, which they had to wear continuously for no less than 2 h in the office 
during the experiment. The app starts recording after receiving the data from both sensors. 
Daily activities were allowed, such as working, talking, and resting. We did not conduct the 
Stroop color-word test or Trier social stress test (TSST) to induce stress. After data was collected, 
it was exported through DB Browser (SQLite). Table 1 shows eight records in the database. The 
collected data was ordered by time. Each record contains a recording time, subject name, EEG 
features, stress value, and hardware information. For privacy reasons, Table 1 only shows some 

Table 1 
EEG features data and stress scores.
ID α β δ θ γ Stress
1 390 520 30228 203 137 52.65
2 117 374 9404 301 17 41.19
3 172 564 1741 253 34 42.29
4 172 564 1741 253 34 40.76
5 1155 1249 57513 3332 266 41.37
6 1155 1249 57513 3332 266 41.93
7 1270 919 18925 2939 565 46.46
8 137 530 3136 160 22 42.4
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of these features. Note that the stress score was obtained directly from the chest strap and served 
as the target value in the experiment. 
	 Figure	3	shows	the	amplitude	of	β	for	a	volunteer.	In	the	graph,	the	gray	line	shows	the	raw	
data and the blue line shows the result after preprocessing. In this experiment, the smoothing 
factor α was set to 0.1. It can be seen that after EWMA filtering, the amplitude is much smoother 
and there is no notable lag.
 The features data was sorted (in ascending order by stress score) and smoothed to find the 
correlation. Figure 4 shows that the amplitude of β and the stress are positively correlated.

3.2 Training model

 Polynomial regression is one of the most commonly used machine learning algorithms, and 
its coefficients can be estimated through the stochastic gradient descent (SGD) method or the 

Fig. 3. (Color online) Amplitude of β after smoothing.

Fig. 4. (Color online) EEG features data after sorting and MA smoothing (window = 200).
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normal equation. Since the dimensionality of the feature vector of the dataset is small, the 
normal equation was used to obtain the coefficients, as follows:

 1( )T TX X X yθ −= ,  (7)

where X is the training set, y is the stress value, and θ denotes the coefficients of the model. To 
obtain a more robust model and better testing performance, the dataset is usually shuffled during 
training. In our experiment, the samples have an ordered relationship. Hence, no shuffling was 
performed.

3.3 Results and discussion

 Figure 5 shows part of the training and testing results of the model. The red line shows the 
stress scores of the ECG sensor and the blue line shows the inference result of the trained model. 
It can be seen that the proposed model can maintain a consistent trend with the output of the 
ECG model, which indicates that the feature vector in Eq. (5) is sufficient for stress assessment. 
Figure 5 suggests that mental stress can rapidly fluctuate during daily activities, increasing the 
difficulty of fitting.
 Various statistical metrics can be used to measure the performance of a regression model. In 
this experiment, root mean square error (RMSE) and symmetric mean absolute percentage error 
(SMAPE) were used to evaluate the model. The definition of SMAPE was slightly changed to 
obtain a result between 0 and 100. For our model, we obtained a mean RMSE of 11.26 and a 
mean SMAPE of 17.44.

Fig.	5.	 (Color	online)	Training	and	testing	results	obtained	from	α	and	β.
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Here, yi is the stress score obtained from the ECG-based model and ˆiy  is the value predicted 
from the EEG-based model.
 Some researchers have used a single channel and dry-electrode instrument to record the 
prefrontal signal and implement a stress assessment system.(16–18) Nevertheless, these studies 
only distinguished stressed subjects from non-stressed subjects, and no studies using a 
continuous metric have been reported. In this experiment, by utilizing a pre-trained ECG model, 
our method measures the stress as a continuous value, giving a more fine-grained result.
  
3.4 Cross-validation

 Owing to the small dataset, tenfold cross-validation was performed to obtain a more robust 
model. Table 2 shows the results of the model with different features. The model achieves the 
minimum error when using α and β. A single component and irrelevant features increase the 
error.

4. Conclusions

 In this study, we proposed a real-time EEG-based stress assessment method for wearable 
devices. We performed an experiment to collect data and validate the process. The model used is 
efficient, straightforward, and suitable for low-power devices. The accuracy of the result is 
sufficient for stress assessment in daily life. In machine learning tasks, labeling data can be very 
time-consuming and expensive. However, the introduction of an ECG-based model facilitates 
the preparation of labels of EEG data, making the training procedure much more manageable.
 Moreover, our method is capable of predicting stress scores, not just stress levels, which 
allows users to monitor the trend of their stress. The present method also has some limitations. 

Table 2
Tenfold	cross-validation	results	of	the	model	with	different	features.

Selected feature(s) SMAPE (%) RMSE
Mean Max Min Mean Max Min

Α 18.34 22.69 10.45 12.1 16.68 7.56
Β 17.74 23.07 8.33 11.5 16.28 7.23
α β 17.44 22.35 9.04 11.26 16.1 6.77
α β δ γ θ 17.68 22.19 14.63 11.57 16.33 7.5
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The performance of the procedure depends on the selected ECG model, and if the stress changes 
rapidly in a short period, then the output of the EEG model has a lag. We believe that by 
improving the ECG-based stress detection and increasing the sampling rate of the sensors, the 
accuracy of the proposed model will be improved. In the future, we plan to increase the number 
of participants to build a more robust model and design a more effective filtering algorithm and 
feature vector to reduce errors.
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