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	 Mn-doped and Mn–Al co-doped zinc oxide (ZnO) thin films were deposited on glass 
substrates by RF magnetron sputtering at room temperature. The X-ray diffraction results 
revealed that both films consisted of a single phase and had a wurtzite structure with a c-axis 
orientation. The electrical properties, transmittance characteristics, surface properties, and 
crystal structures of the films were investigated following annealing at temperatures ranging 
from 200 to 500 °C. The results showed that the as-deposited Mn:ZnO thin film had an average 
transmittance of 83%. The transmittance increased to 85% following annealing at 500 °C. The 
as-deposited Mn–Al co-doped ZnO thin film had a low transmittance of only 40%. However, 
after annealing at 500 °C, the transmittance increased to 83%. The annealed Mn–Al:ZnO thin 
film also showed a low electrical resistivity of 1.75 × 10−3 Ω·cm, an electron mobility of 
20.8 cm2V−1s−1, and a carrier concentration of 5.3 × 1020 cm−3. Scanning electron microscopy 
(SEM) results showed that the crystal size of both thin films increased following annealing. 
Owing to their good optical and electrical properties, the annealed Mn–Al:ZnO thin films can 
be used as photosensor materials.

1.	 Introduction

	 Transparent conducting oxide (TCO) thin films are widely used in photoelectric devices such 
as liquid crystal displays, organic LEDs, photovoltaic batteries, thin-film solar cells, and 
photosensors.(1–3) Among the many different types of TCO material available nowadays, zinc 
oxide (ZnO) has attracted particular attention due to its direct wide band gap, non-toxicity, low 
cost, and natural abundance. However, ZnO films have high electrical resistance, which hinders 
their practical application.(4–9) Accordingly, the problem of improving the electrical performance 
of ZnO thin films through doping with metallic elements such as Al, Ga, Ag, Ti, Zr, and Mo has 
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attracted significant attention in recent years.(10–15) In such methods, the doped atoms substitute 
for the Zn atoms in the ZnO crystal structure and produce free electrons in the conduction band, 
which lower the electrical resistivity. One of the most widely used dopants of ZnO nanostructures 
is manganese (Mn) due to its large number of free electrons in the electric band. Mn-doped ZnO 
thin films have been widely studied as magnetic semiconductors.(16–20) Furthermore, several 
studies have investigated the effects of Mn doping on the structural morphology and optical 
properties of ZnO.(21,22) However, the literature contains little information on the effects of Mn 
doping and Mn–Al co-doping on the optoelectrical properties of ZnO following annealing at 
different temperatures.
	 TCO thin films can be deposited using many different methods, including molecular beam 
epitaxy (MPE),(23) magnetron sputtering,(24,25) sol–gel processing,(26) chemical vapor 
deposition,(27) pulsed laser deposition, and so forth.(28) Among these methods, RF magnetron 
sputtering is one of the most commonly used for the deposition of ZnO thin films due to the ease 
with which the deposition parameters can be adjusted and controlled.(29,30) Accordingly, in the 
present study, Mn-doped and Mn–Al co-doped ZnO thin films are deposited on glass substrates 
by a RF magnetron sputtering system at room temperature. The as-deposited films are annealed 
at various temperatures in the range of 200–500 °C. The effects of the annealing temperature on 
the structural, optical, and electrical properties of the films are then investigated and compared. 
Good optical and electrical properties are observed for the Mn–Al:ZnO thin films after 
annealing, suggesting that they can be used as photosensor materials.

2.	 Experimental Methodology and Characterization

	 Corning glass substrates with dimensions of 50 mm × 50 mm × 7 mm (length × width × 
thickness) were cut into test pieces with a size of 25 mm × 25 mm × 7 mm using a diamond 
cutter. The test pieces were cleaned sequentially in de-ionized water, acetone, and isopropanol 
(IPA) to remove any non-organic contaminants and residual solvent and were then dried in an 
oven at 90 °C. Mn-doped and Mn–Al co-doped ZnO thin films were then deposited on the 
substrates using an RF magnetron sputtering system with sintered ZnO targets containing 5 at% 
Mn (Mn:ZnO thin film) and 5 at% Mn and 3 at% Al (Mn–Al:ZnO thin film), respectively. Both 
sputtering targets were disk-shaped with dimensions of 75 mm × 2 mm (diameter × thickness). A 
schematic diagram of the sputtering device is presented in Fig. 1. For both films, the deposition 
process was performed using a sputtering power, chamber pressure, deposition time, and target-
to-substrate distance of 100 W, 4 mTorr, 90 min, and 6 mm, respectively. Following the 
deposition process, half of the samples were annealed at a temperature of 200, 300, 400, or 
500 °C. The crystal growth was examined by X-ray diffraction (XRD, SIEMENS D-500) with 
Cu-Kα radiation. The optical transmittance properties of the films were investigated using a 
UV–vis spectrophotometer (Hitachi 2900). The electrical properties were determined by Hall 
effect measurements (AHM-800B). Finally, the surface features and crystal size of the films 
were characterized by scanning electron microscopy (SEM, JSM-7000F).
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3.	 Results and Discussion

3.1	 Structural characterization of Mn:ZnO and Mn–Al:ZnO thin films

	 Figure 2 presents the XRD patterns of the as-deposited and annealed Mn:ZnO thin films. As 
shown, all of the films exhibit a typical ZnO crystal structure with strong peaks at around 34.45° 
(corresponding to the (002) preferential orientation) and 62.68° (corresponding to the (103) 
orientation). In other words, the films have a polycrystalline hexagonal structure with a 
preferential orientation along the c-axis perpendicular to the substrate. No other peaks are 
evident in the XRD patterns, which suggests that the Mn atoms either simply substitute for the 
Zn atoms in the original hexagonal lattice directly, or segregate in the non-crystalline region of 
the structure at the grain boundaries.(31) The intensity of the diffraction peaks increases with 
increasing annealing temperature. Hence, it is inferred that the crystal growth of the Mn:ZnO 
structure is enhanced at higher temperatures. Figure 3 presents the XRD analysis results for the 
Mn–Al:ZnO thin films. The locations and tendencies of the diffraction peaks are similar to 
those of the Mn:ZnO thin films. Moreover, no peaks are observed for either dopant (Mn or Al). 
Hence, the films are again inferred to have a polycrystalline hexagonal structure with a 
preferential orientation along the c-axis perpendicular to the substrate.

3.2	 Transmittance analysis

	 Figures 4 and 5 present the optical transmittance spectra of the Mn:ZnO and Mn–Al:ZnO 
thin films, respectively. The Mn:ZnO thin films have an average transmittance of 80% under the 
as-deposited condition and 83% after annealing, regardless of the annealing temperature.  
However, the Mn–Al:ZnO thin films have an average transmittance of only 40% under the as-
deposited condition and 85% following annealing at 500 °C. The low transmittance before 
annealing can be attributed to the Al content of the films, which acts as a mirror and reflects 
most of the incident light. However, the transmittance is significantly improved following 
annealing, with the transmittance increasing with the annealing temperature. For example, the 

Fig. 1.	 (Color online) Schematic diagram of sputtering device.
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maximum average transmittances are 78% and 85% following annealing at 300 and 500 °C, 
respectively. The increase in transmittance is due to the reduction in the optical energy gap as a 
result of annealing.
	 In the case of direct transmission, the optical absorption coefficient of thin-film systems can 
be expressed as(32)

	 (αhν)2 = A(hν − Eg),	 (1)

where A is a constant, hν is the photon energy, and Eg is the optical band gap energy. Figures 6 
and 7 show the variation of the absorption coefficient (ahν)2 with the photon energy hν for the 
Mn:ZnO and Mn–Al:ZnO thin films, respectively. For each film, the optical energy gap can be 
obtained by linear fitting of the absorption coefficient curves in the sharp absorption edge region 

Fig. 2.	 (Color online) XRD spectra of Mn:ZnO thin 
films annealed at different temperatures.

Fig. 3.	 (Color online) XRD spectra of Mn–Al co-
doped ZnO thin f ilms annealed at different 
temperatures.

Fig. 4.	 (Color online) Transmittance properties of 
Mn:ZnO thin films annealed at different temperatures.

Fig. 5.	 (Color online) Transmittance properties of 
Mn–Al co-doped ZnO thin films annealed at different 
temperatures.
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of the figure. The optical energy gap of a conventional undoped ZnO film is 3.26 eV.(29) 
However, the results presented in Fig. 6 show that the energy gap of the present Mn:ZnO thin 
films is only 2.82 eV. It is speculated that the reduction in the energy gap is most likely the result 
of Zn2+ and Mn2+ exchange interactions between the conduction band electrons in accordance 
with the so-called Burstein–Moss effect.(33,34) Figure 7 similarly shows that the Al3+, Mn2+, and 
Zn2+ interactions between the conduction band electrons cause the energy gap to decrease to 
around 2.3 eV in the as-deposited film and the film annealed at 200 °C. However, following 
annealing at temperatures in the range of 300–500 °C, the energy gap increases slightly to 
2.75 eV due to the diffusion of Al and Mn into the ZnO lattice structure.

3.3	 Electrical properties analysis

	 Tables 1 and 2 show the electrical properties of the as-deposited and annealed Mn:ZnO and 
Mn–Al:ZnO thin films, respectively. For both films, the electrical resistivity decreases with 
increasing annealing temperature due to the enhanced diffusion of the dopants (Mn and Al) into 
the ZnO structure. However, comparison of the results presented in the two tables shows that the 
M-Al:ZnO film has better electrical properties than the Mn:ZnO film (i.e., lower resistivity and 
mobility and a higher carrier concentration). In general, Al3+ provides three free electrons and 
can be activated as effectively as oxygen vacancies.(35,36) Furthermore, the carrier concentration 
in Mn:Al:ZnO is determined primarily by the concentration of oxygen vacancies. Therefore, the 
low resistivity of the Mn–Al:ZnO film annealed at 500 °C (1.75 × 10−3 Ω·cm) can be mainly 
attributed to the increase in the carrier concentration (5.3 × 1020 cm−3).

3.4	 Surface features analysis

	 Figures 8 and 9 present SEM images of the as-deposited and annealed Mn:ZnO and 
Mn–Al:ZnO thin films, respectively. For both films, the grain size increases with increasing 

Fig. 7.	 (Color online) Energy gaps of Mn–Al co-
doped ZnO thin f ilms annealed at different 
temperatures.

Fig. 6.	 (Color online) Energy gaps of Mn:ZnO thin 
films annealed at different temperatures.



180	 Sensors and Materials, Vol. 34, No. 1 (2022)

Fig. 8.	 SEM images of Mn:ZnO thin films: (a) as-deposited and (b)–(e) following annealing at temperatures of (b) 
200 ℃, (c) 300 ℃, (d) 400 ℃, and (e) 500 ℃.

(a) (b)

(c) (d)

(e)

Table 1 
Electrical properties of Mn:ZnO thin films annealed at different temperatures.
Temperature (°C) Resistivity (Ω·cm) Mobility (cm2V−1s−1) Carrier concentration (cm−3)
As-deposited 3.42 × 10−1 31.1 1.46 × 1019

200 1.51 × 10−1 15.9 7.28 × 1019

300 5.83 × 10−2 18.2 9.53 × 1019

400 3.87 × 10−2 21.2 2.46 × 1020

500 2.1 × 10−2 25.9 3.32 × 1020

Table 2 
Electrical properties of Mn–Al co-doped ZnO thin films annealed at different temperatures.
Temperature (°C) Resistivity (Ω·cm) Mobility (cm2V−1s−1) Carrier concentration (cm−3)
As-deposited 3.07 × 10−2 25.9 8.1 × 1019

200 2.2 × 10−2 13.9 9.28 × 1019

300 7.4 × 10−3 16.2 1.5 × 1020

400 3.8 × 10−3 18.5 3.7 × 1020

500 1.75 × 10−3 20.8 5.3 × 1020



Sensors and Materials, Vol. 34, No. 1 (2022)	 181

annealing temperature. For example, the crystal grain size of the Mn:ZnO thin film increases 
from 25.4 nm under the as-deposited condition to 45.3 nm following annealing at 500 °C. 
Similarly, for the Mn–Al:ZnO film, the crystal grain size increases from 28.3 nm before 
annealing to 49.5 nm after annealing at 500 °C.
	 The grain size is related to the full width at half maximum (FWHM) of the peak in the 
corresponding XRD pattern in accordance with the Scherrer formula:(37)

	 D = 0.9λ/βcosθ,	 (2)

where D is the grain size, β is the FWHM value of the XRD peak, λ is the wavelength of the 
incident light, and cosθ is the diffraction angle. In practice, λ and cosθ have constant values in 
the XRD measurement process, and thus the grain size is mainly associated with the FWHM 
value (β). Tables 3 and 4 list the grain size and FWHM value of each of the Mn:ZnO and 

Fig. 9.	 SEM images of Mn–Al:ZnO thin films: (a) as-deposited and (b)–(e) following annealing at temperatures of 
(b) 200 ℃, (c) 300 ℃, (d) 400 ℃, and (e) 500 ℃.

(a) (b)

(c) (d)

(e)
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Mn–Al:ZnO films. As expected from Eq. (2), the grain size increases with decreasing FWHM in 
both sets of films.(38)

4.	 Conclusions

	 We have investigated the structural, optical, and electrical properties of Mn:ZnO and 
Mn–Al:ZnO thin films deposited on glass substrates using an RF magnetron sputtering system 
and annealed at various temperatures in the range of 200–500 °C. The XRD results showed that 
all of the films exhibit strong diffraction peaks corresponding to the (002) and (103) preferential 
orientations. Moreover, no peaks associated with Mn or Al metal phases were observed. Hence, 
it was inferred that both films consist of a single phase and have a wurtzite structure with a 
c-axis orientation. Of the two sets of films, the Mn:ZnO thin films have a higher average 
transmittance than the Mn–Al:ZnO films since the Al metal element causes light scattering. 
However, for both sets of films, the average transmittance increases with increasing annealing 
temperature due to the corresponding reduction in the energy gap (i.e., 2.82 and 2.75 eV for the 
Mn:ZnO and Mn–Al:ZnO films following annealing at 500 °C, respectively). The Mn–Al:ZnO 
films have a better electrical performance than the Mn-ZnO films due to the Al dopant, which 
provides a greater number of free electrons to the conduction band. For both films, the electrical 
resistivity decreases with increasing annealing temperature as a result of the diffusion of Mn 
and Al elements into the ZnO thin film, which enhances the electrical properties. For the 
maximum annealing temperature of 500 °C, the Mn:ZnO and Mn–Al:ZnO films have 
resistivities of 2.1 × 10−2 and 1.75 × 10−3 Ω·cm, respectively. For both sets of films, the crystal 
grain size increases with increasing annealing temperature due to the enhanced crystal growth 
at higher temperatures.  According to the results presented in this study, the optical and electrical 

Table 3 
Grain size and FWHM values of Mn:ZnO thin films annealed at different temperatures.
Annealing temperature (°C) FWHM Grain size (nm)
As-deposited 0.528 25.4
200 0.49 30.9
300 0.45 35.06
400 0.41 42.13
500 0.38 45.3

Table 4 
Grain size and FWHM values of Mn–Al co-doped ZnO thin films annealed at different temperatures.
Annealing temperature (°C) FWHM Grain size (nm)
As-deposited 0.55 28.3
200 0.51 32.5
300 0.45 38.2
400 0.38 44.6
500 0.32 49.5
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properties of the Mn:ZnO and Mn–Al:ZnO films are enhanced by annealing, enabling the films 
to be used in optical sensors or solar cells.
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