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 Recent advances in technology have increased the use of automation in agriculture. 
Commercially available equipment associated with fruit and vegetable quality classification or 
collection has a success rate of classification of around 50%.  Even though a system can operate 
continuously, its low recognition rate causes misjudgments in fruit quality. In this work, we 
propose a new, embedded gateway structure with simple implementation and enhanced success 
rates for fruit and vegetable quality classification. We have combined an edge-computing 
embedded development platform with an artificial intelligence (AI) algorithm structure, where 
microprocessors are used to control the gateway switch of a conveyor, and this platform is used 
to build a small fruit/vegetable quality classification system, which has been implemented and 
tested. The system’s hardware is controlled by different pulse widths. By combining AI 
algorithms of an image sensor for recognition, we have effectively enhanced the system’s 
capability of fruit and vegetable quality recognition.

1. Introduction

 According to a report estimating Taiwan’s population from 2018 to 2065, the percentage of 
people over 65 years old will increase from 14.5% in 2018 to 19.9% in 2025. Moreover, by 2050, 
the percentage will increase to 38%. The rapid decrease in the young adult population is raising 
the average age of people employed in agriculture. The traditional manual fruit screening 
method relies heavily on human labor, has low efficiency, and places a strong physical demand 
on middle-aged workers.
 Traditionally, fruit growers refer to the Fruit and Vegetable Quality Classification Standard 
and Packaging Specification Manual provided by the Agriculture and Food Agency of Taiwan 
for guidelines to manually grade fruit and vegetables before selling them at wholesale markets. 
In this study, we propose a novel embedded smart gateway framework that applies artificial 
intelligence (AI) and edge computing to fruit screening methods as an alternative to traditional 
manual screening. The proposed framework is expected to reduce the fruit error rate and quality 
disputes between fruit growers and consumers. It will also reduce the labor required for the fruit 
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harvesting process. The automatic screening system designed in this study uses an image sensor 
to recognize whether the fruit has serious pest infestation or sunburn and pick out damaged fruit 
to maintain the quality of fruit on the market.

2. Literature Review

 Apte et al. applied the You Only Look Once (YOLO) algorithm in a mobile application in 
2017.(1) It was able to process images acquired by a mobile device. They subsequently modified 
the YOLO feature extraction network model to enhance the inference speed. Iandola et al. 
applied a fire module layer to reduce the number of parameters in the YOLO algorithm and 
increase the image detection speed.(2) In 2018, Redmon and Farhadi proposed the YOLO-v3 
algorithm, which was an improvement of the YOLO-v1 algorithm of Apte et al.(3)  The YOLO-v3 
algorithm was able to process 608 × 608 images on an NVIDIA Titan X graphics card at a speed 
of up to 20 frames per second.
 Santad et al. proposed a system based on the YOLO algorithm to detect and analyze the 
relations between luggage and its owners.(4) The proposed system used camera images to 
enhance security surveillance.
 In 2016, Liu et al. proposed a single-shot detector that combined object frame coordinates 
and classes in a single network architecture and used multiscale feature maps to obtain output 
predictions. The structure was implemented using a convolution neural network (CNN).(5) In the 
same year, Dubey discussed how to detect skin defects on fruit by creating a feature database of 
the external properties of fruit (color, size, shape, and texture).(6) The system first segmented the 
images and applied the speeded up robust features (SURF) algorithm to the segmented images. 
The features were then used to detect defects on the fruit.
 Marimuthu and Roomi established a fuzzy model in 2017 to grade bananas into unripe, ripe, 
and over-ripe. The decision was determined by a framework with eight fuzzy rules created from 
a decision tree.(7) In the same year, Kamran and Pormah combined image processing and an 
artificial neural network to detect whether a cucumber’s shape is ideal (cylindrical) or defective 
(curved or conical). A novel algorithm was implemented using MATLAB 2010a to preprocess 
and extract shape features from images.(8) However, these identification and classification 
systems are unsuitable for fruit classification since they can only perform simple classifications 
for the same type of fruit.(9,10)

 In 2018, Khaing et al. proposed a CNN based on the back-propagation algorithm and applied 
it to fruit classification, as well as a vision-based automatic classification system.(11,12) In the 
same year, Hossain et al. proposed a vision-based fruit classification framework using deep 
learning. The framework also used a CNN, where a finely tuned VGG-16 model showed 
outstanding accuracy.(13) Lu et al. used a six-layer CNN composed of convolutional, pooling, and 
fully connected layers for fruit classification. The system obtained an accuracy of 91.44%, which 
was higher than that of algorithms such as the voting-based support vector machine, wavelet 
entropy, and genetic algorithm. However, increasing the number of types of fruit decreased the 
accuracy.(14)
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 Bochinski et al. proposed using the intersection over union (IOU) tracking algorithm for 
high-speed tracking.(15) The tracking method performed IOU calculations at the target position 
detected in the original image and the target position in the next frame. If the value of the IOU is 
higher than the established threshold value, the regions are considered as related and determined 
as the same object. This method can effectively track the same object. Chen et al. proposed the 
use of an embedded imaging system and AI to detect fruit quality. The accuracy rate was as high 
as 88% in experiments, thus demonstrating effective detection.(16)

3. Structure of System

3.1 System overview

 Our newly proposed system with the embedded smart gateway framework was developed to 
satisfy the following research and development objectives:
A. Its automatic gateway control system is capable of classifying the fruit quality.
B. The neural network model of the system is embedded in a development board to perform 

model inference.
C. The system has a graphical interface to display the delivery of the fruit in real-time.
D. The system is capable of using the graphical interface to collect data and evaluate the neural 

network model.
E. The system has a low fabrication cost.
 The model combines AI and gateways for intelligent decision-making and classification. 
Fruit and vegetable image detection is performed through a camera sensor module. The AI 
model uses the detection data to determine the gateways’ actions. The Keras model framework 
is used for the classification and evaluated the computation time of building the model. Keras is 
an open-source software library that provides a Python interface for artificial neural networks. 
Data collection was performed to obtain the data required for the neural network model, and an 
experiment was conducted using the collected data. Moreover, the graphical user interface of the 
system integrates the functions used for training the model. In summary, an effective procedure 
is proposed in this work to develop the fruit classification system.
 The model is trained to search for functions that fit the features in the data. After evaluating 
the completed model, the model is integrated into the system architecture. The YOLO algorithm 
is implemented on a Jetson TX2 embedded platform to perform object detection, circle the fruit 
image, and perform image recognition using the CNN algorithm. On the basis of the recognition 
results, different pulse width modulation (PWM) signals are sent by an STM32 microcontroller 
development board to control the gateway automatically.

3.2 Hardware architecture

 The system includes three pieces of essential hardware: a Jetson TX2 embedded platform 
development board, an STM32 microcontroller development board, and an MG996R servomotor. 
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Figure 1 shows the hardware architecture of the system. First, the operator turns on the front 
gateway control switch. Then the front gateway delivers the fruit to the conveyor platform. Next, 
a camera on the Jetson TX2 development board is used to capture images to perform tracking 
and recognize fruit images. Finally, the recognition results are sent by automatically detecting 
whether the fruit is ready to leave the conveyor platform. Since there is no PWM or transistor–
transistor logic (TTL) for the RS232 UART output module on the Jetson TX2 board, the UART 
signals are sent to the STM32 microprocessor module through an FT232 Bluetooth module 
(USB to TTL). Different PWM signals are sent to control the direction of the MG996R 
servomotor and to sort the fruit on the conveyor platform according to the received string.
 The computer is used to train the neural network model in advance, and the model is 
embedded in the Jetson TX2 development board. After transferring the images from the camera 
on the development board to the neural network model, the FT232 module sends the inference 
results to the STM32 microcontroller development board and the PWM signals to the MG996R 
servomotor.

3.3 System of operation process

 Figure 2 shows a flow chart of the system operation. Object detection is used to detect 
whether or not the fruit is delivered to the platform. The tracking and recognition function 
continues to work before the fruit leaves the conveyor platform during the delivery process and 
saves all the tracking results. When the fruit leaves the conveyor platform, all the recognition 
results are saved as the final answer to determine the quality of the fruit, and the gateway 
channel control is activated.

Fig. 1. (Color online) System hardware architecture.
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4. Systematic Procedures

4.1 Front gateway

 Figure 3 shows a flow chart of the control of the front gateway. Two servomotors take turns 
to perform lifting and lowering movements. When servomotor 2 for the gateway is lifted and 
released to pass the first fruit to the conveyor platform, servomotor 1 for the gateway is lowered 
so that the second fruit rolls over to the front row to the release position. At this moment, 
servomotor 2 for the gateway is lowered and servomotor 1 for the gateway is lifted to make a 
buffer for the momentum of the subsequent fruit. By continuing this action, fruits are 
consecutively rolled onto the conveyor platform.

4.2 Tiny-YOLO

 Because the Tiny-YOLO algorithm is a network architecture for feature extraction provided 
by the YOLO algorithm, the Tiny-YOLO algorithm has a lighter neural network architecture 
design than YOLO. The tiny-YOLO’s architecture is composed of a CNN and max-pooling. A 
batch normalization (BN) layer is added after each convolution layer to normalize the 
parameters, help the model learn, and accelerate training. A leaky rectified linear unit (ReLU) is 
used as the activation function. Figure 4 shows the Tiny-YOLO architecture, from which we can 
see that the sizes of the filters are increased as powers of 2, which allows the input dimension to 
be reduced using the max-pooling layer. In addition, a 1 × 1 size convolution kernel is used at the 
end of the architecture for training. Since the Tiny-YOLO algorithm uses a two-layer feature 
pyramid network (FPN), the dimensions of the output layer are configured as output tensors 
with sizes of 13 × 13 and 26 × 26 to perform object detection.

Fig. 2. (Color online) System operation process.
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4.3	 Uff	model

 The fruit classification recognition model (Filename Extension.h5) built by Keras is 
converted to a model file (Filename Extension.uff) available in TensorRT through the software 
developed by NVIDIA TensorRT. Furthermore, model inference is performed on the converted 
model file using C++.
 As shown in Table 1, the original Keras model is written in Python, whereas the TensorRT 
model is written in C++. It can be seen that the use of C++ and the uff model enhances the 

Fig. 3. (Color online) Front gateway control process.

Fig. 4. (Color online) Tiny-YOLO architecture.
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inference speed by 2.5–2.7 times. The enhancement will be even greater if a deeper network 
architecture is used.

4.4 Back gateway

 Figure 5 shows the control of the gate that waits to receive the final fruit identification results. 
Since the system is divided into three channels, it accepts three different codes and sends out 
three types of PWM signals. After the gate is turned, it is set to the center position before the 
next motor turns.

4.5	 Object	detection	model

 The architecture of the feature extraction network is modified for the YOLO algorithm. 
Therefore, the architectures in Table 2 were designed for comparison in the experiment.
 Note that the system uses the FPN framework to output coarse and fine features for the 
regression prediction of object locations. Therefore, the output dimension must be set to the 
output tensor of the corresponding category.

5.	 Experimental	Results

 We use the YOLO algorithm to experimentally evaluate the model, and two parameters are 
set for the YOLO object detection: (1) non-maximum suppression (NMS)–IOU is set to 0.45 and 
(2) object confidence is set to 0.3 to make the system work more smoothly and achieve better 
accuracy. Two indices are used to perform the evaluation, as discussed in this section. An 
example is first used to explain the definition of the index used for evaluation, which is followed 
by the displayed experiment data.

5.1	 Precision–recall	(PR)	curve

 The IOU must be calculated before drawing a PR curve. In Eq. (1) and Fig. 6, A is the real 
annotated box and B is the predicted object box. The IOU represents the rate of overlap between 
the real object box and the predicted object box. Larger IOU values indicate better object 
detection capabilities.

 ( )( ) ( )( )/IOU area A B area A B= ∩ ∪  (1)

Table 1
Comparison of model speeds.

Keras model TensorRT model Enhancement of speed
Programming language Python C++
Speed of inference model 4.6–8.2 ms 1.8–3 ms 2.5–2.7
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 We refer to the model proposed by Padilla et al. for object prediction.(17) A graph is plotted 
after ranking the object’s confidence levels (confidences) according to the model’s predictions of 
the object type. The PR curve is plotted by calculating the precision and recall values of true 
positive (TP) and accumulated TP (Acc TP) against the values of false positive (FP) and 
accumulated FP (Acc FP) by calculating the accumulated TP or FP.
 Figures 7–13 show the PR curves for the neural model architectures used for comparison and 
the proposed architecture. In the figures, FRUIT AP represents the PR curve of good fruit and 
B_ FRUIT AP represents the PR curve of bad fruit. In Figs. 7–9, the precision value decreases 
gradually as the recall value increases. The recall value for the Tiny-Batch-Dropout architecture 
reaches a very high level, indicating that all boxes containing the objects are circled, and it 
correctly determines the quality of fruit for the circled object. The recall values for the Small-

Table 2
Architectures used for comparison.

Architectures

Small-Mobilenet-v1
Small-Mobilenet-v2
Tiny-Batch-Dropout

Tiny-Nobatch-Have-Leaky
Tiny-SqueezeNet

Tiny-Octave

Fig. 5. (Color online) Back gateway control process.

Fig. 6. (Color online) Difference and intersection.
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Fig. 7. (Color online) Small-Mobilenet-v1 PR curve (single test).

Fig. 8. (Color online) Small-Mobilenet-v2 PR curve (single test).

Fig. 9. (Color online) Tiny-Batch-Dropout PR curve (single test).
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Fig. 10. (Color online) Tiny-Nobatch-Have-Leaky PR curve (single test).

Fig. 11. (Color online) Tiny-Octave PR curve (single test).

Fig. 12. (Color online) Tiny-SqueezeNet PR curve (single test).
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Mobilenet-v1 and Small-Mobilenet-v2 architectures are not significantly different and these 
architectures have average performance.
 Figure 10 shows the PR curves for the Tiny-Nobatch-Have-Leaky architecture without the 
BN layer. The results of the judgment box are incorrect, and the performance is very poor even 
though the recall values can be improved.
 In Fig. 11, the PR curve for the Tiny-Octave architecture is based on the accuracy of detecting 
fruit quality. Since the architecture uses fewer parameters than the Small-Mobilenet-v2 and 
Small-Mobilenet-v1 architectures, the PR curves are rough with a downward slope. As a result, 
the performance of the model is poor and the accuracy is reduced by 10% compared with the two 
architectures.
 Figure 12 shows the PR curve for the Tiny-SqueezeNet architecture. Regardless of the quality 
of the fruit, there is a gradual decrease in precision as the recall increases, and the area under the 
curve (AUC) is quite small, indicating the poor performance of the model.
 Figure 13 shows the PR curve for the proposed Tiny-YOLO architecture. The curve for the 
good fruit is relatively smooth, which means that the model performs satisfactorily, and the 
overall accuracy is relatively high compared with that of the Tiny-SqueezeNet architecture. 
When the recall increases to 90%, the precision is still around 60%.

5.2	 Mean	average	precision	(mAP)

 The mAP is calculated by summing the average precision (AP) for each class and dividing by 
the number of classes. In this work, the AP values are calculated by calculating the maximum 
precision corresponding to each value of the recall, similar to the AUC for each type of 
precision–recall curve. The precision–recall curve is plotted by calculating the precision and 
recall values of the accumulated TP or FP detections.
 Table 3 shows the mAP for various architectures of neural networks. An evaluation model 
was used with the same training dataset and test set to compare the mAP of training and testing 

Fig. 13. (Color online) Tiny-YOLO PR curve (single test).
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for a single subject with the mAP of multiple subjects. For the Small-Mobilenet-v2 and Small-
Mobilenet-v1 architectures, both training sets have a good mAP in general. The Small-
Mobilenet-v2 architecture has an accuracy improvement of 1.71% for a single fruit. However, 
there is no noticeable enhancement compared with the Tiny-YOLO architecture.
 The results of testing performed on the Jetson TX2 Developer Edition in terms of the number 
of parameters required for different architectures and the detection speed are given in Table 4. 
Most of the models have close to 50 layers. However, the Small-Mobilenet-v2 architecture has as 
many as 70 layers since it uses the Add layer twice. Both the Small-Mobilenet-v1 and Small-
Mobilenet-v2 architectures have a reduced number of parameters owing to the use of a 1 × 1 
filter compared with the use of no filter. The number of parameters for the Tiny-SqueezeNet 
architecture is 19.2 times less than that for the Tiny-YOLO architecture, and the computation 
time is reduced by over 0.02 s. Lastly, the performance of the Tiny-Octave architecture is typical. 
It has a reasonable number of parameters and an average operating speed.

5.3	 Model	training

 The NVIDIA GTX1070 Ti training model is used for comparison of the architectures with 
the batch size set to 16. Also, the number of epochs is set to 100, where the first 50 epochs are set 
with a fixed learning rate and the first 20 network layers of the model are set to fixed weights. 
For the subsequent 50 epochs, all network layers are set to be trainable, and the learning rate is 
varied dynamically to gradually adjust to a lower learning rate. The initial loss value is set at a 
rate of 10−3 units, and training is stopped if the new loss value is not lower than the original loss 
value.
 Figure 14 shows the changes in the learning rates of the models during training. The learning 
rates are adjusted in the subsequent 50 training sessions according to changes in the value of the 
loss function. The benefit of adjusting the learning rates is that the best local parameter is still 
searched for when there is no escape from the local optimization parameters. The Small-
Mobilenet-v1 architecture uses a lower learning rate at the beginning and extends the number of 
training epochs to 86. On the other hand, the Tiny-Octave architecture is ineffective in adjusting 
the learning rate to reduce the loss function value.
 Figure 15 shows the loss function graphs for the training set of each model. The graphs of all 
models slowly flatten out without showing significant fluctuations in the learning loss function. 

Table 3
Comparison of mAP for different architectures.

Result 1 Result 2 Result 3 Result 4 Result 5 Result 6
Small-Mobilenet-v1 49.26 80.83 18.73 35.52 44.30 70.95
Small-Mobilenet-v2 51.96 83.32 18.92 34.09 46.69 72.69
Tiny-Batch-Dropout 54.47 84.27 20.49 32.82 48.17 77.02
Tiny-Nobatch-Have-Leaky 32.34 51.91 10.20 20.84 29.96 52.97
Tiny-SqueezeNet 33.48 57.21 10.29 22.35 32.26 53.83
Tiny-Octave 37.41 65.46 15.21 31.07 37.67 64.48
Tiny-YOLO 61.53 85.59 22.94 36.36 52.88 75.07
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However, the loss function of the Tiny-SqueezeNet architecture is the highest and its average 
accuracy is relatively poor. Similarly, the Small-Mobilenet-v1 architecture also requires a long 
training time. On the other hand, both the Small-Mobilenet-v2 and Tiny-YOLO architectures 
have relatively low loss function values.
 Figure 16 shows the loss function graphs for the validation set of each model. The loss values 
of all models tend to converge. Nevertheless, fluctuations occur for the Tiny-Nobatch-Have-
Leaky architecture. However, the model training becomes unstable without using the BN layer 
and the loss function is relatively high. The loss functions of the Small-Mobilenet-v1, Small-

Table 4
Comparison of parameters under different architectures.

Parameter (MB) Network layers Training time (min) Detection speed (s)
Small-Mobilenet v1 3.58 58 198 0.0784
Small-Mobilenet v2 4.47 70 171 0.1058
Tiny-Batch-Dropout 8.67 55 162 0.0916
Tiny-Nobatch-Have-Leaky 8.66 35 165 0.0784
Tiny-Octave 1.78 51 150 0.0785
Tiny-SqueezeNet 0.45 50 212 0.0578
Tiny-YOLO 8.67 44 175 0.0860

Fig. 15. (Color online) Model loss function graphs (training).

Fig. 14. (Color online) Adjustment of the learning rate.

Table 3
Comparison of mAP for different architectures.

Result 1 Result 2 Result 3 Result 4 Result 5 Result 6
Small-Mobilenet-v1 49.26 80.83 18.73 35.52 44.30 70.95
Small-Mobilenet-v2 51.96 83.32 18.92 34.09 46.69 72.69
Tiny-Batch-Dropout 54.47 84.27 20.49 32.82 48.17 77.02
Tiny-Nobatch-Have-Leaky 32.34 51.91 10.20 20.84 29.96 52.97
Tiny-SqueezeNet 33.48 57.21 10.29 22.35 32.26 53.83
Tiny-Octave 37.41 65.46 15.21 31.07 37.67 64.48
Tiny-YOLO 61.53 85.59 22.94 36.36 52.88 75.07
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Mobilenet-v2, and Tiny-YOLO architectures have relatively similar mAP values at the end of the 
validation.

6.	 Conclusion

 In this work, we proposed a novel embedded smart gateway framework that combines the 
YOLO-v3 algorithm and the Tiny-YOLO neural network model. We performed object detection 
and compared the proposed framework with several other models in terms of classification  
performances. Furthermore, we built a model architecture to develop the proposed system using 
TensorFlow and the Keras framework. We also acquired all images used in this work. The 
proposed Tiny-YOLO architecture achieves an mAP of 75% for object detection.
 Overall, we implemented a vision-based application on an embedded system to realize an 
automatic screening system for fruit on a conveyor platform. In the future, the proposed model 
can be adapted for a field-programmable gate array board by loading only a single classification 
model for a single type of fruit.
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