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	 Prestressed concrete (PSC) girder bridges are widely used owing to their economic efficiency, 
durability, and effective maintenance. However, since voids in ducts may cause sudden structural 
collapse, it is very important to detect them early. To solve this problem, voids are detected by 
analyzing the impact-echo (IE) signal measured by IE equipment containing a sensor, but it is 
difficult to accurately detect voids in a short time even by experts. In this study, we aim to detect 
voids in ducts on the basis of various types of neural networks and IE signals. For more effective 
learning, the raw IE signal is filtered and then used in its specific range, and it is also converted 
into a frequency spectrum by the Fourier transform. The filtered IE signal is trained with long 
short-term memory (LSTM) to reflect the characteristics of its time series. The frequency 
spectrum is trained with a feed-forward neural network because it is not a time series. After that, 
a multiplication operation is performed on the outputs of each network, and a model capable of 
detecting the internal voids of ducts is created by training these integrated features. In the 
experimental results, our proposed model showed an accuracy of 97.474%.

1.	 Introduction

	 Over the last several decades, many prestressed concrete (PSC) girder bridges have been 
built for reasons such as economy and stability. Their advantages are attributable to the tension 
of the tendons inserted inside ducts. PSC girder bridges are widely used for highways and 
railroads that must be designed in long sections.(1) However, various defects (deterioration, 
cracks, or internal defects) can form in a PSC structure used for a long time, which, if not 
detected early, may lead to a major accident.(2)

	 Various nondestructive evaluation (NDE) methods have been devised to identify defects in 
concrete structures.(3–7) NDE can evaluate the internal condition of a concrete structure without 
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damaging the surface. This characteristic has the advantage that it can be applied to an entire 
large-scale concrete structure for more efficient evaluation. A typical NDE method used for 
concrete structures is the impact-echo (IE) method.(8) However, owing to the complex internal 
structure of a PSC girder bridge, an appropriate NDE method has not yet been established. 
According to a US government report, the best performance of NDE-based geophysical 
exploration detected only 33% of voids in a duct,(9) limiting its application in the field.
	 Some recent studies have introduced machine learning (or deep learning) to detect defects in 
bridges.(10–13) These studies focused on identifying cracks on the surface or deck of a bridge. 
However, corrosion of the tendons of PSC girder bridges caused by exposure to air may cause 
the sudden structural collapse of bridges. To prevent this problem, tendons are inserted in ducts 
and then protected by pouring concrete into the ducts. However, a duct has a small inner 
diameter and is designed in a complex structure, so a void may occur inside the duct. Therefore, 
checking ducts for internal voids is very important to confirm the safety of an existing or new 
bridge.
	 In this study, by introducing a neural network into the IE method, we propose a model for 
detecting the internal voids of ducts with higher accuracy than before. We collected IE signals 
by fabricating a PSC specimen as similar as possible to that of a PSC girder bridge. Also, we 
gave the sample various thicknesses. A digital filter (low-pass filter, high-pass filter, or band-
pass filter) was applied to the IE signal to remove noise and improve its quality. Then the 
frequency spectrum of the IE signal was analyzed and trained with a neural network. The 
filtered IE signal was trained with a long short-term memory (LSTM),(14) which has 
demonstrated excellent performance for time-series data. In contrast, since the frequency 
spectrum is not a time series, we trained it with a feed-forward neural network (FFNN). The 
outputs of the two networks perform a multiplication operation to compute the integrated 
features and train them. Through this, the presence or absence of a void is predicted with a 
classifier composed of a softmax function.
	 We trained the IE signal efficiently by setting specific ranges of 0–5000 and 0–10000 μs, and 
we evaluated the performance for each range. In addition, K-fold cross-validation was used to 
prevent bias in the data used for evaluation. In our experiment, average accuracies of 95.084% 
and 97.474% were obtained for the ranges of 0–5000 and 0–10000 μs, respectively
	 We describe related works in Sect. 2. In Sect. 3, we explain the PSC specimen and IE 
equipment used in the experiment. In Sect. 4, we explain our proposed methodology. In Sect. 5, 
we discuss the experimental results. Finally, concluding remarks are given in Sect. 6.

2.	 Related Works

	 The IE method is the impact-generated stress wave-based NDE method designed to evaluate 
concrete structures, where the waves are reflected by internal defects and external surfaces.(8) It 
has been widely used in the detection of defects in concrete structures.(15–17) In general, the IE 
method analyzes the frequency spectrum generated through the Fourier transform and is 
effective. However, the frequency spectrum is difficult to interpret correctly owing to its 
multiple peaks and the vibration and thickness of the structure to be analyzed.(18) Attempts have 
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been made to apply signal processing to the IE method to improve its performance. Signal-
processing-based approaches have been applied to time-frequency analysis such as the short-
time Fourier transform, Hilbert–Huang transform, empirical mode decomposition (EMD), and 
wavelet transform (WT).(18–22) Shokouhi et al.(23) confirmed the WT to be the most efficient 
time-frequency analysis, and the WT is still widely applied to IE signals in signal-processing-
based approaches. Recently, an approach that applied variational mode decomposition (VMD) 
instead of EMD has also been tried.(24)

	 In contrast, machine-learning-based approaches focus on evaluating specific elements or the 
overall state of structures. The main topics for which these approaches are applied are structural 
condition monitoring (SHM)(10) and NDE.(11–13) Zhang et al.(11) performed a full-condition 
assessment of concrete by applying an extreme learning machine (ELM),(25) which was the latest 
technology at the time, to an IE signal processed by the WT, and confirmed the possibility of 
using machine learning with excellent performance. Dorafshan and Azari confirmed the 
potential of the convolutional neural network (CNN)(26) and LSTM(14) for the detection of 
internal defects in a bridge deck.(12,13) Owing to this trend, attempts have recently been made to 
create a standard dataset of IE signals for concrete structures.(27)

	 As such, machine learning has been applied in many studies. However, although internal void 
detection of ducts is a very important problem, many studies have mainly used signal-
processing-based approaches and machine learning has been rarely applied.(28) Oh et al.(28) 
trained a standardized raw IE signal and structure information (concrete thickness, depth of 
duct, distance between the measured point and impact point) with LSTM to detect the internal 
voids of ducts. The raw IE signal contains various noises caused by the environment. However, it 
is difficult to remove noise effectively by standardization, which may disturb the training of 
neural network models. To effectively apply machine learning to this problem, it is important to 
improve the quality of data by appropriate signal processing and to develop an appropriate 
model without overfitting or underfitting.

3.	 Materials

	 In this section, we describe the PSC specimens and IE measurement equipment manufactured 
to proceed with the experiment. We manufactured PSC specimens in three formats, and the IE 
equipment was manufactured by Olson Instruments Inc. (https://olsoninstruments.com/).

3.1	 PSC specimens

	 To train and evaluate the proposed method, we construct PSC specimens and collect IE 
signals. In a PSC girder bridge, tendons are inserted inside ducts after the ducts are installed. 
The tendons are pulled in both directions and then fixed to generate compressive stress. The duct 
structure shown in Fig. 1 is used to generate an uplift force, making it resilient against bending 
stress. After that, grouting (casting concrete) is performed inside the duct to prevent the 
occurrence of defects due to exposure of the tendons to air.

https://olsoninstruments.com/
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	 The three types of PSC specimens fabricated in this study are as follows: (1) seven block 
specimens with a thickness of 600 mm and different void locations and shapes (Fig. 2), (2) a 
single specimen with different thicknesses of 450, 700, 900, and 1150 mm (Fig. 3), and (3) a 

Fig. 3.	 (Color online) Specimen of various thicknesses (450 to 1150 mm).

Fig. 2.	 Seven block specimens with a thickness of 600 mm.

Fig. 1.	 Duct structure of PSC girder bridge.
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bridge-type specimen identical to an actual PSC girder bridge based on the standard PSC casting 
process for data collection, with thicknesses of 250, 280, 390, 400, 490, 526, and 1000 mm (Fig. 
4). Their material properties are shown in Table 1.

3.2	 IE 

	 To collect IE signal data from these specimens, we collect the raw IE signal using IE 
equipment. In the IE equipment, the impactor impacts on the surface of the concrete structure, 
and the sensor (receiver) measures the impact-generated stress (sound) waves reflected by an 
object (such as a defect or an opposing surface). This measured wave is the IE signal. The 
process of this operation is shown in Fig. 5. The raw IE signals measured in this way are 
transformed through filtering and Fourier transforms into input features used in neural network 
models.

Fig. 4.	 (Color online) Structure of a bridge-type specimen.

Table 1
Material properties of PSC specimens.

Concrete strength Cast type Prestressing strand Sheath pipe Rebar
fck = 40 MPa Plywood (3) 4 - Φ 15.2 × 22 Φ 110 SD40

Fig. 5.	 (Color online) Process of measuring the raw IE signal through the IE equipment.
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4.	 Methodology

	 In this section, we explain the neural-network-based approach for the internal void detection 
of a duct. The whole architecture used for internal void detection is shown in Fig. 6. The 
proposed model consists of features created by feature extraction and a neural network model 
that trains them. The proposed model is made up of the following layers. The filtered IE signal is 
trained by the LSTM layer. The frequency spectrum is trained in the first FFNN layer. The 
vectors that are element-wise multiplied values on the LSTM layer’s output (vector) and the first 
FFNN layer’s (scalar) output are trained in the second FFNN layer. The output layer is used to 
train the output of the second FFNN layer to classify normal ducts and internal voids. Each 
component is explained in detail in the rest of this section.

4.1	 Feature extraction

	 In machine learning, feature extraction is one of the important processes used to facilitate a 
model’s training and generalization by extracting useful information from data. It also helps 
humans interpret data. Various feature extraction methods have also been proposed in NDE. The 
IE signal occurs instantaneously and contains noise due to various environmental factors. 
Therefore, many studies have devised effective feature extraction methods. For example, at 
Olson Instruments Inc., which develops NDE instruments, the IE signal is processed with a 
digital filter and then the frequency spectrum is analyzed with the Fourier transform. This 
method is a simple but effective feature extraction method, and is widely used in the field to 
check for the internal voids of ducts. Thus, we used the same method to extract the features, and 
the result of processing the IE signal with the digital signal is shown in Fig. 7.
	 There are three types of digital filters: low-pass filters (LPFs), high-pass filters (HPFs), and 
band-pass filters (BPFs).(29) LPFs pass a signal with a frequency lower than a cutoff frequency 

Fig. 6.	 Model architecture for internal void detection of duct. S1:n are IE signals to which a filter based on signal 
processing is applied. f1:512 are the frequency domains using the Fourier transform based on the filtered IE signal.
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and remove a signal with higher frequencies. Unlike LPFs, HPFs pass a signal with a frequency 
higher than a cutoff frequency and remove a signal with lower frequencies. BPFs only pass 
signals between the lower and upper cutoff frequencies. In the NDE equipment used in this 
study, each filter is applied in the following situations.
•	 If the concrete thickness is less than 76.2 mm, apply a BPF with a frequency range of 10000–

50000 Hz.
•	 If the concrete thickness is 76.2 to 152.4 mm, apply an HPF with a cutoff of 6000 Hz.
•	 If the concrete thickness is 152.4 to 304.8 mm, apply an HPF with a cutoff of 3000 Hz.
•	 If the concrete thickness is more than 304.8 mm, apply an HPF with a cutoff of 1000 Hz.
	 The frequency spectrum obtained by the Fourier transform(30) is used for various purposes 
such as concrete thickness analysis and defect location analysis. The Fourier transform 
decomposes the original signal into sine and cosine functions in various frequency bands from 
low frequency to high frequency and converts the signal in the time domain into the frequency 
domain. In this study, we use a fast Fourier transform (FFT), which performs a discrete Fourier 
transform (DFT) with a small amount of computation.

4.2	 Neural network approach

	 In this study, we use two features with different characteristics. Accordingly, we use different 
neural network models (LSTM and FFNN) suitable for each feature.

4.2.1	 LSTM

	 LSTM(14) is an algorithm based on recurrent neural networks (RNNs) and is widely used in 
various time-series data such as text and signals. LSTM is composed of three gates (forget, 
input, output) and a cell state (Ct) as shown in Fig. 8(a). Ct decides whether to use the information 
created at this stage by using the calculated results at the three gates.

	 , , 1( )
i i it x h t h h t hi W x W h bσ −= + + 	 (1)

	 , , 1( )
f f ft x h t h h t hf W x W h bσ −= + + 	 (2)

Fig. 7.	 Example of applying digital filter to raw IE signal.
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	 , , 1( )
o o ot x h t h h t ho W x W h bσ −= + + 	 (3)

	 , , 1tanh( )
g g gt x h t h h t hg W x W h b−= + + 	 (4)

	 1t t t t tC f C i g−= +� �  	 (5)

	 tanh( )t t th o C= �  	 (6)

Here, ht−1 is the information received from the previous time step and xt is the current 
information. A forget gate ( ft) decides whether to remember ht−1. It considers ht−1 and xt, and 
forgets the information of the previous time step if the result is 0 and remembers it completely if 
it is 1. The input gate ( t ti g� ) decides the amount of xt to be stored in ht−1. The output gate (ht) 
considers Ct and ot to decide how much of the information calculated in the current cell is sent to 
the next time step. LSTM can be used in various structures, as shown in Fig. 9, depending on the 
purpose.
	 In this study, LSTM trains the filtered IE signal. The filtered IE signal represents the result of 
reflection at some location away from the impact. That is, each time step may have meaningful 
information. Therefore, we train the signal for each time step, as shown in Fig. 9(a), as follows:

	 1 2[ , ,..., ]nh h h h= . 	 (7)

4.2.2	 FFNN

	 An FFNN, which is shown in Fig. 8(b), is the artificial neural network with the simplest 
structure that was first devised among the various neural networks. An FFNN consists of 
weights ( 1 2, , ..., nw w w w= ) and bias (b) that train the relationship between inputs and outputs, 
and constructs a hidden layer with an activation function to perform nonlinear operations. In this 
study, an FFNN trains the following features: (1) the frequency spectrum and (2) the product of 
the outputs of two networks.

Fig. 8.	 (a) Architecture of LSTM cell and (b) architecture of FFNN.

(a) (b)



Sensors and Materials, Vol. 34, No. 1 (2022)	 129

	 Unlike the raw IE signal, the frequency spectrum consists of values that do not affect each 
other, so LSTM is not suitable. Therefore, we train the frequency spectrum using an FFNN. For 
the frequency spectrum ( f ), Leaky ReLU (rectified linear unit) was used as an activation 
function, as shown in Eq. (9), where we set α = 0.01.

	 1 2 3 512( )F f w f w f w f w f b= ⋅ + ⋅ + ⋅ + + ⋅ +�  	 (8)

	 ( ( )) max( ( ), ( ))L F f F f F fα= ⋅ 	 (9)

	 The output of the LSTM is trained for each time step and represented as a 100-dimensional 
vector. The output of the FFNN trained on the frequency spectrum is represented as a single real 
number. The 100-dimensional vector of the IE signal output by the LSTM and the single scalar 
value of the frequency output by the FFNN become a 100-dimensional vector through 
multiplication. This feature is trained with a higher FFNN using ReLU, as shown in Eq. (10), and 
this result predicts whether there are internal voids in the duct by using a softmax classifier.

	 max(0, ( ( )))RELU h L F f= �  	 (10)

	

1

( 1, 2, ..., ),
i

k

x

K
x

k

ez i K
e

=

= =

∑ 	 (11)

4.3	 Normalization and regularization

	 We used batch normalization(31) for the LSTM layer (filtered IE signal) and FFNN layer 
(frequency spectrum). Batch normalization is the process of adjusting the mean and variance of 
features included in the batch together during the training of the neural network model. This 
solves the problem of an internal covariance shift, in which the variance of input values varies 
for each layer or activation function. That is, for each layer, a batch normalization is performed 
to ensure that a deformed variance does not appear, as shown in Eqs. (12)–(15).

Fig. 9.	 Examples of various uses of LSTM.

(a) (b)
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	 , ˆ( )i iBN x xγ β γ β= + 	 (15)

Here, 1{ ,..., }mx xβ =  is the data of the mini-batch, μβ is the mean of the mini-batch, 2
βσ  is the 

variance of the mini-batch, and ˆix  is the normalization result. At this time, , ( )iBN xγ β  adjusts the 
parameters (γ, β) used in backpropagation. For regularization, we used Dropout(32) for the feature 
that is the output of the multiplication operation. Dropout is a way to exclude a proportion of the 
input features (r) from training, and we set r = 0.1.

5.	 Experimental Results and Discussion

	 In this study, the features used as inputs are the filtered IE signal and the frequency spectrum. 
In the IE signal, we set and use some ranges, not the entire signal, and the types of features are 
shown in Table 2. The total number of data collected for the PSC specimen is 22186.
	 As shown in Table 2, we select a specific range (0–5000 or 0–10000 μs) of the IE signal and 
use it for training. This is because the entire range of the IE signal may contain information that 
causes noise, which may cause an error when used in an application. When training these 
conditions and features, we search for optimal hyperparameters by experiments, and the optimal 
hyperparameters are shown in Table 3.

Table 2
Feature information.
Domain Feature (μs) Number of features

IE signal 0–5000 229
0–10000 455

Frequency spectrum 512

Table 3
Hyperparameters in proposed model.
Hyperparameter Best Range in experiment
Epochs 50 10–100
Batch size 256 20–512
LSTM output 100 50–300
FFNN output (frequency spectrum) 1 1
FFNN output (multiplication operation) 512 256–1024



Sensors and Materials, Vol. 34, No. 1 (2022)	 131

	 To validate the proposed method, we used K-fold cross-validation, which is a method of 
evaluating a dataset by dividing it into K folds. In the experiment, we set K = 5. The average 
performance and confusion matrix of the model trained with a specific range (0–5000 or 
0–10000 μs) of features selected by us are shown in Tables 4 and 5.
	 As shown in Tables 4 and 5, compared with the baseline, the range of 0–5000 μs showed an 
average accuracy of 95.084% (+1.716%) and the range of 0–10000 μs showed an average 
accuracy of 97.474% (+4.309%). In both cases, improved performance compared with the 
baseline was found. However, the important point in detecting the internal voids of a duct is to 
increase the recall degree. For example, if the model predicts voids as normal and humans do not 
see them, this can lead to a dangerous situation.

6.	 Conclusions

	 Voids that occur inside the ducts of PSC girder bridges are a very dangerous problem because 
they can cause sudden structural collapse. General NDE to detect voids is complex and requires 
academic interpretation by experts. In this study, we introduced various neural networks that 
efficiently detect internal voids of a duct by considering the characteristics of data. When 
heterogeneous neural networks were used for void detection in this study, the accuracy of void 
detection ranged from 95.084 to 97.474%.
	 In the future, we will develop a model for detecting voids inside the ducts of older PSC girder 
bridges that were constructed with a different casting method from the present method. If the 
casting method is different, the shape of the IE signal will also be different, which weakens the 
relationship between learning and inference. In addition, considering that the IE signal shows 
different shapes according to the concrete thickness, we intend to collect more data for each 
thickness level. The model trained using this data will be applied to bridges of various 
thicknesses.

Table 4
Average performance evaluation of fivefold cross-validation (0–5000 μs).

Confusion 
matrix Precision Recall F1-score Acc (%)True Pred

Normal Defect

Baseline(28) Normal 2138 132 0.9419 0.9231 0.9324
93.368Defect 178 1991 0.9179 0.9378 0.9278

Proposed model Normal 2167 101 0.9555 0.9488 0.9521 95.084
(+1.716)Defect 117 2052 0.9461 0.9531 0.9496

Table 5
Average performance evaluation of fivefold cross-validation (0–10000 μs).

Confusion 
matrix Precision Recall F1-score Acc (%)True Pred

Normal Defect

Baseline(28) Normal 2115 154 0.9321 0.9280 0.9301
93.165Defect 164 2005 0.9244 0.9287 0.9265

Proposed model
Normal 2204 65 0.9714 0.9787 0.9750 97.474 

(+4.309)Defect 48 2121 0.9779 0.9703 0.9741
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