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	 We propose sliding mode control (SMC) with different types of particle swarm optimization 
for an aircraft automatic landing system (ALS). The controller parameters are adjusted by a 
fuzzy system, adaptive weight particle swarm optimization, and grey-based particle swarm 
optimization. When an aircraft encounters wind shear, it diverges from the originally scheduled 
flight condition, and the aircraft ALS cannot be used in such an environment during large wind 
speed changes. The proposed intelligent control scheme can help pilots guide an aircraft to a safe 
landing in wind shear of up to 58 ft/s. In addition to software simulation, real-time automatic 
landing control is realized by an embedded floating-point digital signal processor (DSP). Control 
signals are obtained by relative sensors and sent to the DSP in a hardware simulation.

1.	 Introduction

	 On March 1, 2008, a Lufthansa Airbus A320 tried to land at Hamburg airport in a crosswind 
that exceeded the limit for the aircraft, causing the left wing to touch the ground. The pilots then 
performed a go around and successfully prevented the aircraft from crashing. This case is a 
successful example of pilot skill. However, junior pilots might not be able to save an aircraft in 
such a situation. It is well known that atmospheric disturbances cause flight safety problems and 
reduce the quality of flight for passengers. An accident survey(1) categorized the causes of 1085 
aircraft accidents from 1950 through 2019, as shown in Table 1. Weather was a contributing 
factor for 10% of accidents. The first automatic landing system (ALS) was developed in the UK 
in 1965. Since then, most aircraft have had an ALS installed. The ALS relies on an instrument 
landing system to guide the aircraft to the proper altitude, position, and angle of approach during 
the landing phase. According to Federal Aviation Administration (FAA) regulations,(2) the 
allowable environmental conditions in the determination of dispersion limits are headwinds of 
up to 25 knots (1 knot = 1.852 km/h), tailwinds of up to 10 knots, crosswinds of up to 15 knots, 
moderate turbulence, and wind shear of 8 knots per 100 feet from 200 feet to touchdown. 
Conventional ALSs can provide a smooth landing, which is essential for the comfort of 
passengers. However, these systems work only within a specified operational safety envelope. 
When the conditions, such as turbulence or wind shear, are beyond the envelope, ALSs often 
cannot be used. Most conventional control laws generated by an ALS are based on the gain 
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scheduling method.(3) Control parameters are preset for different flight conditions within a 
specified safety envelope, which is defined by the FAA regulations. When the conditions, such 
as wind shear, are beyond the specified flight envelope, the ALS is disabled and manual 
operation is engaged. Even low-level wind shear can affect aircraft airspeed during takeoff and 
landing in disastrous ways, and airline pilots are trained to avoid all wind shear. An 
inexperienced pilot may not be able to guide the aircraft safely under wind shear. Therefore, it is 
desirable to develop an intelligent ALS that expands the operational envelope to include more 
safe responses under a wider range of wind disturbance conditions. The goal of this study is to 
show that our proposed intelligent ALS can relieve human operation and guide the aircraft to a 
safe landing within a certain range of wind shear conditions. 
	 In recent years, intelligent control has become increasingly popular in control engineering 
applications. Many intelligent concepts have been applied in various scientific and engineering 
research. There have also been major achievements in the flight control domain.(4–9) In 
conventional control systems, proportional–integral–derivative (PID) control has been applied to 
controller design for decades and is the most commonly used type of control in engineering 
applications. The gains of PID control can be tuned by many techniques. In recent years, the 
genetic algorithm has been the most widely used technique.
	 In this study, we apply artificial life models for the modeling and simulation of lifelike 
phenomena to aircraft automatic landing controller design. This study is mainly based on two 
algorithms, which are used to adjust the control parameters of the pitch autopilot: adaptive 
weight particle swarm optimization (AWPSO)(10) and grey-based particle swarm optimization 
(GPSO).(11) Our control schemes are based on sliding mode control (SMC) with a fuzzy system 
(FSMC).(12–14) To realize a hardware controller, a digital signal processor (DSP) is used and an 
intelligent aircraft landing control system is implemented on the chip.(15) All signals are sensed 
by relative sensors and sent to the DSP in a hardware simulation. In our previous works, a DSP 
was successfully applied to a cerebellar model articulation controller for turbulence 
conditions.(15,16) In this study, different PSO methods with FSMC on a chip are used to simulate 
the control of an aircraft landing under wind shear conditions.

2.	 System Description

	 In the aircraft landing phase, the pilot descends from the cruise altitude to an altitude of 
approximately 1200 ft above the ground. The pilot then positions the aircraft so it is on a 
trajectory towards the runway centerline. When the aircraft approaches the outer airport marker, 
which is about 4 nautical miles from the runway, the glide path signal is intercepted, as shown in 

Table 1
Causes of fatal accidents by decade from 1950 through 2019.
Decade 1950s (%) 1960s (%) 1970s (%) 1980s (%) 1990s (%) 2000s (%) 2010s (%) All (%)
Pilot error 50 53 49 42 49 50 57 49
Mechanical 26 27 19 22 22 23 21 23
Weather 15 7 10 14 7 8 10 10
Sabotage 4 4 9 12 8 9 8 8
Other 5 9 13 10 14 10 4 10
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Fig. 1.(17) As the airplane descends along the glide path, its pitch, attitude, and speed must be 
controlled. The descent rate is about 10 ft/s and the pitch angle is between −5° and +5°. Finally, 
as the airplane descends to 20 to 70 feet above the ground, the glide path control system is 
disengaged and a flare maneuver is executed. The vertical descent rate is decreased to 2 ft/s so 
that the landing gear can dissipate the energy of the impact at landing. The pitch angle of the 
airplane is then adjusted to between 0° and 5° for most aircraft, which allows a soft touchdown 
on the runway surface.
	 A simplified model of a commercial aircraft that moves only in the longitudinal and vertical 
planes is used in the simulations for ease of implementation.(7) The motion equations of the 
aircraft are given as follows: 

	 0( ) ( ) cos( )
180u g w g q E E T Tu X u u X w w X q g X Xπ γ θ δ δ ∆ = ∆ − + ∆ − + ∆ − ∆ + + 
 

� ,	 (1)

    0 0( ) ( ) sin( )
180 180u g w g q E E T Tw Z u u Z w w Z U q g Z Zπ π γ θ δ δ   ∆ = ∆ − + ∆ − + − ∆ − ∆ + +   

   
� ,	(2)

	 ( ) ( )u g w g q E E T Tq M u u M w w M q M Mδ δ∆ = ∆ − + ∆ − + ∆ + +� ,	 (3)

	 qθ∆ = ∆� ,	 (4)

	 0180
h w Uπ θ∆ = −∆ + ∆� ,	 (5)

where u is the aircraft longitudinal velocity (ft/s), w is the aircraft vertical velocity (ft/s), q is the 
pitch rate (°/s), θ is the pitch angle (°), h is the aircraft altitude (ft), δE is the incremental elevator 
angle (°), δT is the throttle setting (ft/s), γo is the flight path angle (−3°), and g is acceleration due 
to gravity (32.2 ft/s2). The parameters Xi, Zi, and Mi are the stability and control derivatives.
	 In our previous study, the proposed method was successfully applied to turbulence conditions 
without hardware implementation.(14) In this study, wind shear is considered as the disturbance, 
and the control system is implemented on a chip. In the presence of significant wind shear, a 
pilot has to take corrective action to ensure safety, as shown in Fig. 2. Figure 3 shows a wind 
shear profile for a wind speed of 60 ft/s.

Fig. 1.	 Glide path and flare path.
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3.	 Intelligent Control

	 A simplified PID controller is used in the aircraft landing control structure as shown in Fig. 
4. Its inputs consist of altitude and altitude rate commands along with the aircraft altitude and 
altitude rate. We can obtain the pitch command via the aircraft landing controller. Then, the 
pitch autopilot is controlled by the pitch command. The pitch autopilot is shown in Fig. 5. 
Detailed descriptions can be found in Ref. 7. To enable an aircraft to land more stably when it 
reaches the flare path, a constant pitch angle is added to the controller. When severe turbulence 
is encountered, the PID controller may not be able to guide the aircraft to land safely. The 
proposed controller can overcome these disadvantages by employing an FSMC compensator, 
which uses a traditional PID controller to stabilize the system and FSMC to provide precise 
control. The gains of the FSMC controller are adjusted on the basis of experience to provide 
tolerable solutions rather than desired solutions. The FSMC can effectively meliorate these 
conditions.
	 The overall control scheme is shown in Fig. 6, in which the control signal U is the sum of the 
PID controller output and the FSMC output.(14) The inputs for the FSMC and PID controller are 

Fig. 3.	 (Color online) Profile of wind shear model.

Fig. 2.	 Aircraft encountering wind shear.
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altitude, altitude command, altitude rate, and altitude rate command. In each time step k, the 
FSMC involves a recall process and a learning process. In the recall process, it uses the desired 
system output of the next time step and the actual system output to generate the control signal Y. 
In the learning process, the control signal of the pitch autopilot, U, is treated as a desired output. 
The output of the FSMC compensates the pitch command. When the wind turbulence is too 
strong, the ALS cannot control the aircraft to make it land safely. Here, we use the proposed 
intelligent control scheme to improve the robustness of the ALS to turbulence.

Fig. 4.	 PID controller.

Fig. 5.	 Pitch autopilot.

Fig. 6.	 Adjustment of control parameters and FSMC-PID structure.
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3.1	 SMC

	 In general, the SMC design is divided into two main steps. The first step is to define the 
sliding surface. The second step is to design a control law such that the system will reach and 
proceed on the intersection of the sliding surface.(12–14) The motion equations of the aircraft 
given in the previous section can be described by

	 x Ax Bu D= + +� .	 (6)

	 The sliding surface is defined as

	 s = Ce,	 (7)

where 5 1x ×∈R  is the state vector, 2 1u ×∈R  is the input vector, 2 5C ×∈R  is the matrix of the 
controller parameters, 5 2D ×∈R  is the matrix of the disturbance, and 5 1e ×∈R  is the vector of the 
tracking error. Then the optimal equivalent control ueq can be obtained by solving

	 0
equ us = =� ,	 (8)

	 From Eqs. (6) and (8), we have

	 ( ) 0d d eqs Ce C x x Cx CAx CBu= = − = − − =� � � � � ,	 (9)

	 1( ) ( )eq du CB Cx CAx−= −� .	 (10)

	 We choose the switching control usw as

	 1( ) sgn (s)swu CB k−= ;	 (11)

thus, the control law becomes

	 eq swu u u= + .	 (12)

	 If the system state is outside the sliding surface, the controller must be designed such that it 
can force the system state to approach the sliding surface and then move along the sliding 
surface to the origin. By choosing the Lyapunov function as

	 21
2

V s= ,	 (13)
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the derivative of Eq. (13) can be obtained as

	 ( ) 0V ss k s CDs k CD s= = − + ≤ − + <� � ,	 (14)

where k is a positive constant. Thus, 0V <� . Therefore, the control law given by Eq. (12) can 
guarantee that the sliding mode is reached and sustained.
	 Since SMC has a chattering phenomenon along the sliding surface, the sliding layer technique 
is utilized to eliminate the chattering of the input. The signum function sgn(s) is replaced by the 
function sat(s/ε), which is defined as

	

1,         

sat  ,   

1,        

s
s s s

s

ε

ε ε
ε ε

ε

+ >
  = − ≤ ≤ 

  
− < −

	 (15)

where ε is a positive constant, as shown in Figs. 7 and 8.

3.2	 Fuzzy system

	 For a stable control system, the derivative of the Lyapunov function [Eq. (14)] is less than 
zero, and the system states of the sliding mode should move along the sliding surface to the 
origin. In this study, FSMC is applied to acquire the controller gain (k). In the FSMC, the control 
gain, and therefore k, is updated online and the stability of the system is guaranteed. Fuzzy 
control is an intelligent method that uses tentative rules to calculate the output variable. To use 
fuzzy control, we have to know the domain of the parameters and the fuzzy rule base.(13) In Fig. 
9, x is the input to the fuzzy system and y is the output variable of the fuzzy system. We choose s 
and s� as the inputs of the fuzzy system to calculate k. The fuzzy rules are shown in Table 2.

Fig. 8.	 Saturation function.Fig. 7.	 Signum function.
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3.3	 Particle swarm optimization

	 The main steps in the particle swarm optimization (PSO) process are described as follows.(18)

(i)	 Initialize a population (array) of particles with random positions and velocities in the 
problem space.

(ii)	 Calculate the fitness function [Eq. (16)], set the value to pbest for each particle, and set 
the best value of all the particles to gbest.

	 ( ) 1( )( ( 180)) n
idf x u x

−
= − 	 (16)

(iii)	Change the velocity and position of each particle according to Eqs. (17) and (18), 
respectively: 

	 ( ) ( )( 1) ( ) ( ) ( )
1 21 2n n n n

id did id id idv w v c rand pbest x c rand gbest x+ = ⋅ + ⋅ ⋅ − + ⋅ ⋅ − 	 (17)

	 ( 1) ( 1)n nn
idid idx x v+ += + 	 (18)

(iv)	 Calculate the particle’s fitness again and compare it with the particle’s pbest. If the 
current value is better than pbest, then set the pbest value equal to the current value and 
the pbest location equal to the current location in d-dimensional space.

(v)	 Compare the fitness evaluation with the population’s overall previous best. If the current 
value is better than gbest, then reset gbest to the current particle’s array index and value.

(vi)	 Loop to step (iii) until a criterion is met, which is usually a sufficiently good fitness or a 
maximum number of iterations (generations).

Fig. 9.	 Block diagram for a fuzzy system.

Table 2
Fuzzy rule table.

k S
NB NS ZR PS PB

S�

PB Z S M B B
PS S Z S M B
ZR M S Z S M
NS B M S Z S
NB B B M S Z
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	 The flowchart of PSO is given in Fig. 10.
	 The definitions of the parameters are

( )n
idv : velocity of individual i at iteration k, ( )min max n

d didV v V≤ ≤ ,
w: inertia weight factor,
c1, c2: acceleration constants,
rand1, rand2: uniform random numbers between 0 and 1,

( )n
idx : current position of individual i at iteration n,

pbesti: pbest of individual i, 
gbest: gbest of the group.

3.4	 Grey-based particle swarm optimization

	 When the fittest particle gbest is regarded as the reference sequence and all particles X are 
viewed as comparative values, grey relational analysis can be applied to analyze the similarity 
between them. Then both the inertia weight and acceleration coefficients of a specific particle 
are determined according to the corresponding relational grade. Since the result of grey 
relational analysis may differ for different generations, the algorithm parameters vary over the 
generations. According to Ref. 11, the grey relational coefficients between the fittest particle 
gbest and the ith particle Xi at the dth dimension can be rewritten as

Fig. 10.	 Flowchart of PSO.
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where    id d idgbest x∆ = − ,   max i d idmax max∆ = ∆ ,   min i d idmin min∆ = ∆ , and   (0,1 ]ξ∈ . Then the 
corresponding relational grade is given as

	
1
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D

i i id
d

g g gbest X r D
=

= =∑ .	 (20)

3.5	 Adaptive weight particle swarm optimization

	 Here, the outset particles are randomly divided into two groups with inertial weights of 0.9 
and 0.4. These two groups are independently searched. The function characteristic is determined 
by comparing the fitnesses of these two groups. Then, the two groups are merged for a suitable 
inertia weight of the characteristics, and the search is continued for half of the total time. Finally, 
a linear decreasing mode is employed for the rest of the time to improve the accuracy.(10) The 
steps of AWPSO are as follows.

(i)	 Particles are randomly divided into two groups. One group uses an inertial weight of 0.9 
× search speed and the other uses an inertial weight of 0.4 × search speed.

(ii)	 When one-quarter of the generations are determined, merge the two groups using 
suitable inertia weights in the calculation until half the generations are determined.

(iii)	Return to the linear decreasing mode.
	 Since the inertia weight is small, the particles will converge rapidly. However, premature 
convergence to a local optimal solution may occur. If the initial values rapidly converge to near 
the local minimum at the beginning, then a higher speed can be applied, which is very helpful in 
improving the accuracy and convergence rate.

4.	 Experimental Results

	 The controller in this study is designed by the C code composer on the TMS320C6713 DSP. 
In the DSP hardware structure, the JTAG connector is responsible for receiving and transmitting 
serial data, as shown in Fig. 11.

Fig. 11.	 DSP hardware structure.
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	 Figures 12–15 show the results obtained by using FSMC-PID with the AWPSO controller. 
The controller can successfully guide the aircraft flying through wind shear of 58 ft/s. When the 
wind speed is 58 ft/s, the horizontal position at touchdown is 901.2 ft, the horizontal speed is 
234.6 ft/s, the vertical speed is −1.9 ft/s, and the pitch angle is −9.9°.
	 FSMC-PID with the GPSO controller can also successfully guide the aircraft flying through 
wind shear of 58 ft/s. When the wind speed is 58 ft/s, the horizontal position at touchdown is 
924.6 ft, the vertical speed is −1.9 ft/s, and the pitch angle is −9.9°. Table 3 shows the results of 
using FSMC with different adjustment methods. The proposed controllers have superior 
performance to the conventional PID controller in the case of severe wind shear.

Fig. 12.	 (Color online) Wind shear profile (58 ft/s). Fig. 13.	 (Color online) Aircraft pitch and pitch 
command.

Fig. 14.	 (Color online) Ver t ical velocity and 
command.

Fig. 15.	 (Color online) Aircraf t alt itude and 
command.

Table 3
Results of using FSMC with different adjustment methods.
Method Wind speed (ft/s) Landing point (ft) Aircraft vertical speed (ft/s) Pitch angle (°)
AWPSO 58 901.2 −1.9 −9.9
GPSO 58 924.6 −1.9 −9.9
PID 11 995.1 −2.4 −2.9
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5.	 Conclusions

	 We proposed a DSP chip for designing embedded fuzzy SMC with optimization algorithms 
for an ALS. By comparison with software simulations, the DSP controller demonstrated the 
reliability of the proposed intelligent control system. All signals were sensed by relative sensors 
and sent to the DSP in our hardware simulation. In addition to the hardware implementation, we 
showed that the PSO method and intelligent controller improve the aircraft landing performance. 
FSMC compensation with a simple structure for a PID intelligent controller with optimization 
algorithms increases the efficiency of the controller, and the learning rules reduce its memory 
use. Our experimental results showed that the DSP controller is suitable for real-time online 
control. Its performance is similar to that of software simulation, and it can tolerate a wider 
range of wind shear conditions than the airplanes using previous models. The proposed control 
scheme can overcome wind shear of 58 ft/s and has superior performance to conventional PID 
control.
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