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	 The objective of this study was to integrate different position sensors and a camera in a 
wheeled mobile robot (WMR) for use in a rescue task. A differential global positioning system 
(DGPS) was used to locate the WMR position and the goal position. A laser sensor was utilized 
to detect the locations of obstacles and edge values. The edge values were applied to the A* 
algorithm to search for the shortest path for the WMR. While searching for a target, a webcam 
was used to capture images of the surroundings. Color segmentation was achieved and the 
desired color was captured. The captured color target was then used for tracking control of the 
rescue task. The A* algorithm, together with image processing and laser sensors, was able to 
obtain the shortest path to the desired color target in an unknown environment. Obstacle 
avoidance control was based on a fuzzy system. Experiments confirmed that the proposed 
control scheme worked properly and was suitable for rescue tasks.

1.	 Introduction

	 In recent years, researchers have paid increasing attention to improving robotic systems, and 
many related applications and technologies have been widely developed. In particular, robots 
have begun to be used instead of human beings for some extremely dangerous tasks. Therefore, 
robot navigation and obstacle avoidance are two major issues that have been widely discussed. 
Path planning, obstacle avoidance, parking control, object searching and tracking, the 
cooperation of multiple robots, and so forth have been applied to the design of wheeled mobile 
robot (WMR) control schemes. Zhao and BeMent addressed six common kinds of three-wheeled 
robot models and their ability of control.(1) Leow et al. analyzed the kinetic model of an all-
direction wheeled robot.(2) Chung et al. utilized two wheels with different speeds for position 
control.(3) Wang and Juang utilized a localization system for the path planning and parking 
control of a WMR.(4) Lin applied an omnidirectional camera and laser range finder to extract 
point features and line features as landmarks.(5) Wang used a low-end camera for simultaneous 
localization and mapping (SLAM), which had the advantages of standardized hardware and 
software interfaces with a low price, as well as the potential for wide application in robotic 
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systems.(6) In these studies, feature points were obtained by a complex and time-consuming 
process. However, laser sensors can be used to obtain environmental data. Martinez et al. used a 
laser scanner for following mobile objects and avoiding obstacles.(7) Yamakawa et al. proposed 
two fixed-angle laser scanners that could reconstruct the 3D shape of an obstacle, and the 
reconstructed shapes were used to produce a potential field map for mobile robot path 
planning.(8) Chen used the data of a laser range finder to develop a feature map. The feature map 
and corresponding preset waypoints were applied to calculate the SLAM algorithm for a moving 
robot in an unknown environment.(9) Much research has been devoted to the problem of vehicle 
path planning using, for example, topological methods, the Dijkstra algorithm, the A* algorithm, 
the B-spline, genetic algorithms, and neural networks.(10,11) Merchan-Cruz and Morris proposed 
a novel fuzzy genetic algorithm approach to tackle the problem of trajectory planning for two 
collaborative robot manipulators sharing a common workspace.(12) Zhong et al. presented a new 
methodology based on a neural network for robot path planning, in which an improved Hopfield-
type neural network model was established for propagating the target activity among neurons in 
the manner of physical heat conduction, which guaranteed that the target and obstacles remained 
at the peak and the bottom of the activity landscape of the neural network, respectively.(13)

	 Fuzzy logic has the advantage of the solution to a problem being cast in terms that human 
operators can understand. Fuzzy logic has the benefit of better implementation, greater fault 
tolerance, and more fitting usage on nonlinear systems. Shi et al. installed multiple sensors on a 
WMR and utilized fuzzy reasoning values to control it.(14) Lee et al. proposed rapid path 
planning and fuzzy logic control to force a WMR to trace the desired path.(15,16) Regarding real-
time obstacle avoidance, the majority of studies have used fuzzy controllers to control WMRs.(17) 
In the case of outdoor navigation, the global positioning system (GPS) has been widely used for 
mobile robots.(18) Hamid et al. proposed a mobile robot equipped with a GPS navigation system 
and an obstacle avoidance system that utilized a low-cost mobile structure, a GPS module, and a 
sonar sensor.(19) Kim et al. used differential GPS and odometry data within the framework of an 
extended Kalman filter to localize a mobile robot. They also proposed an algorithm to detect 
curbs through a laser range finder.(20) In the target image recognition part, the vision sensor 
helped with searching and recognition. Many studies on WMRs have used color image 
recognition for robotic mobile control.(21) Ravari et al. proposed a vision-based algorithm for 
mobile robot navigation in unknown outdoor environments.(22) Tsai proposed color filter array 
interpolation for an image sensor and the visual tracking control design of a WMR.(23) The focus 
of automatic guidance vehicle development is on how to make these vehicles work effectively in 
various environments. Many studies of intelligent robots have been applied in the areas of home 
services, health care, space exploration, the military, and entertainment.(24,25) In our previous 
work, GPS and image processing were successfully applied to outdoor patrols.(26) In this study, 
we integrated a laser sensor, a vision sensor, a differential global positioning system (DGPS), 
image processing, A* algorithm path planning, and a fuzzy system into a WMR. The WMR 
could move along the shortest path and avoid obstacles to reach the desired goal position and 
utilized a vision sensor to search for the target of the rescue task.
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2.	 System Description

	 The experiment on the proposed control scheme was performed using an Ihomer WMR, as 
shown in Fig. 1. The WMR had a length of 480 mm, a width of 455 mm, and a height of 250 mm. 
The Ihomer WMR is a two-wheeled differentially driven car-like robot with two small casters 
located at its rear and front. Two 18 V DC motors were installed to provide torque (7.2 mNm), 
and each motor controlled one wheel. The maximum speed of the robot was 1.6 m/s and its total 
weight was 15.2 kg. A Sick LMS100 laser sensor was placed on top of the WMR, as shown in 
Fig. 1. Its field of view was 270°, the scanning range was 20 m, the resolution of the angular step 
width was 0.5°, and the rotation frequency was 50 Hz. Ethernet was used to connect the LMS100 
sensor and the on-board computer. 
	 The LMS100 sensor is an electro-optical laser measurement sensor that electrosensitively 
scans the perimeter of its surroundings in a plane with the aid of laser beams. It measures its 
surroundings using 2D polar coordinates. If a laser beam is incident on an object, the position 
can be determined in the form of distance and direction, as shown in Fig. 2.(27) The LMS100 
sensor emits pulsed laser beams using a laser diode. If such a laser pulse is incident on an object 
or person, it will be reflected at its surface. The reflection is detected in the sensor’s receiver 
using a photodiode. The distance to the object is calculated from the propagation time that the 
light requires from emission to reception of the reflection at the sensor. A similar principle of 
pulse propagation time measurement is used by radar systems. Figure 3 shows the network 
camera (Microsoft LifeCam Studio 1080P Full-HD) used in this study to identify the color of the 
target. The camera was installed on top of the WMR.
	 A DGPS typically uses measurements from two or more remote receivers to calculate the 
differences (corrections) between measurements and thus provide more accurate position 
solutions. With a DGPS, it is possible to monitor variations in the GPS signal and communicate 
these variations to the other receiver. The second receiver can then correct its calculations for 
better accuracy. A DGPS relies on the concept that errors in the position at one location are 
similar to those for all locations within a given area. The reference station collects the range 
measurements from each GPS satellite in view and forms the differences (corrections) between 
the calculated distances to the satellites and the measured pseudo-ranges to the satellites. These 
corrections are then used to satisfy the Radio Technical Commission for Maritime Services 
(RTCM) standard established for transmitting differential corrections and are broadcast to the 
remote receivers using a data communication link. Each remote receiver applies the transmitted 
DGPS corrections to its range measurements of the same satellites. By this technique, spatially 
correlated errors such as satellite orbital errors, ionosphere errors, and tropospheric errors can be 
significantly reduced, while common errors such as clock bias can be eliminated, thus improving 
the position accuracy of the GPS. A GMS-2 DGPS receiver was installed on top of the WMR at 
the center position, as shown in Fig. 4. Through Wi-Fi communication with the GPS receiver, 
real-time GPS information in the RTCM format can be obtained. The differential results were 
calculated using the GMS-2 receiver. The GMS-2 receiver transmitted the location and direction 
data to the computer via USB and RS232 connections. The GMS-2 receiver was a single-
frequency GPS+GLONASS L1 DGPS receiver. The differential results were calculated using the 
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GMS-2 receiver in the National Marine Electronics Association (NMEA) format. The dynamic 
average error was measured three times along a rectangular path and was compared with the 
static measurement data, as shown in Fig. 5.

Fig. 1.	 (Color online) LMS100 sensor on top of the 
Ihomer WMR.

Fig. 3.	 (Color online) Microsoft webcam.

Fig. 2.	 Scanning simulation of the LMS100 sensor.

Fig. 4.	 (Color online) GMS-2 DGPS receiver.

Fig. 5.	 (Color online) Dynamic average error of the GMS-2 receiver in DGPS mode with a moving velocity of 
0.5 m/s. (a) 0.7431, (b) 0.7016, and (c) 0.6347 m.

(a) (b) (c)
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3.	 Image Processing

	 The webcam captured the image in the RGB color space; then, the RGB image was 
transformed to the HSL color space. Color segmentation was used to obtain the desired color(28) 
and then binarize the color of the target. A filter was used to eliminate noise during image 
processing. Image thresholding consisted of changing the image brightness to 0 or 255, where 0 
represented black and 255 represented white.(29) The original image could therefore be simplified 
into the foreground and background. The foreground represented the captured target, while the 
background was the image to be filtered out. This method reduced the amount of image data 
processing. When thresholding an image, finding an appropriate threshold is very important as 
the threshold will affect the captured image of the target. The image thresholding was based on 
comparing the pixel value at each point in the image with the threshold value. If the pixel value 
was larger than the threshold value, it was set to 255; if the pixel value was smaller than the 
threshold value, it was set to 0. In image processing, it is necessary to perform noise reduction 
before target detection. The mean filter is a linear filtering technology(30) that can be used to 
remove Gaussian noise. The principal neighborhood average method uses the mean value of each 
pixel in a certain image region to replace each pixel of the original image. The median filter is a 
nonlinear filtering technology that can be used to remove noise from images and signals. It is 
particularly useful for speckle noise and salt-and-pepper noise. It is also useful for detecting 
instances of undesirable edge blur to save edge features. In this procedure, it is necessary to first 
set an n × n mask, where n must be odd. Then, a value is extracted to replace the original image 
value on an image after sorting in the mask. 

3.1	 Color segmentation

	 Color segmentation can recognize all colors from an image and extract specific colors. To 
extract specific colors, the color spectrum is used to decide the thresholds for the hue, saturation, 
and lightness.(31) The webcam in a detection system then only detects the desired color. We used 
this process to detect the color of the target. An example is shown in Fig. 6, which shows 
different blocks in different colors. We located the green color by setting the hue value at 120°, 
the saturation value at 100%, and the lightness value at 0.5. In Fig. 7, the red frame shows the 
detected section, and only the green square was detected.

Fig. 6.	 (Color online) Blocks of different colors. Fig. 7.	 (Color online) Detected section and green 
square.
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3.2	 Distance estimation

	 The real-world distance was computed by a geometric method, which was used to calculate 
the distance between the WMR and the target. Three prerequisite angles were calculated:
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where Lx is the largest width that the camera can see and is the length from the left to the right of 
the view, E is the height from the camera to the floor, b is the distance from the projection point 
of the camera on the floor to the closest viewpoint, and Ly is the largest range that the camera can 
see. Two prerequisite positions were calculated using Eqs. (4) and (5),(32) in which the real 
positions are X and Y, μ and v are the horizontal and vertical pixels of the center coordinates of 
the target, respectively, and H and W represent the pixel lengths of the image provided by the 
camera. We obtained the center coordinates of the target after the image processing. The 
estimated distance was then used to calculate the distance between the WMR and the target.
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3.3	 Pre-processing experiment results

	 The RGB image was first transformed to the HSL color space, and then the color segmentation 
process was applied in the HSL color space. We intended the robot to search for yellow features 
with threshold values of 25 < H < 46, 47 < S < 255, and 0 < L < 247, as shown in Fig. 8. Color 
features were used to search for the target because when the WMR searched for or approached a 
target, the image of the target may have been distorted. The use of features requires fewer 
computations and provides more robust performance, making them suitable for real-time control. 
After color segmentation and image binarization, there was speckle noise, as shown in Fig. 9. We 
used the median filter to filter out the noise, as shown in Fig. 10. Next, we set the white frame as 
the detection range. We captured the desired target by setting the area pixel threshold, as shown 
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in Fig. 11(a). We then obtained the target’s center position (the x and y pixels) and the pixel area 
of the target, as shown in Fig. 11(b). This information was then used to calculate the distance 
between the WMR and the target.

Fig. 8.	 (Color online) (a) RGB image and (b) HSL image.

(a) (b)

Fig. 9.	 Speckle noise in the binary image. Fig. 10.	 Median filter.

(a) (b)

Fig. 11.	 (Color online) (a) Detection range shown by white frame. The target is captured in the yellow box. (b) 
Center position of target and pixel area information.
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Fig. 12.	 Flow chart of the control sequence.

4.	 Control Scheme

	 The flow chart of the control sequence is shown in Fig. 12. In this study, we used a laser 
sensor to detect the locations of obstacles and the edge values. We used the edge values with the 
A* algorithm to search for the shortest path and used fuzzy theory to safely move along the 
shortest path. We then used a DGPS to locate the WMR position and the goal position to search 
for the desired target in an unknown environment. 

4.1	 A* path planning algorithm

	 The A* algorithm is based on the Dijkstra algorithm and the best-first search algorithm.(33) Its 
basic frame is based on a graph traversal search strategy, but it uses the heuristic function to 
estimate the cost from a node to the destination, which then guides the search toward the 
destination. The heuristic function is expressed as

	 * *( ) ( )f g j h j= + ,	 (6)
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where g( j) is the actual cost from the origin node to node j (i.e., the cost of finding the optimal 
path), h*( j) is the estimation of the minimum cost from node j to the destination node, which 
depends on the heuristic information of the problem area, and f*( j) is the estimation of the 
minimum travel cost among all routes from the origin node to the destination node. If h*( j) = 0, 
there is no heuristic information and the Dijkstra algorithm must be used. Users can choose an 
appropriate h*( j) for different cases, but h*( j) must obey the following consistency rule: h*( j) 
must be less than h( j), which is the actual cost from node j to the destination node. If the cost 
function accords with the rule, then the problem has optimal results and the A* algorithm will 
find the optimal route. The advantage of the A* algorithm is that it guides the search toward the 
destination node using the heuristic function, which can reduce the search depth and the number 
of nodes in the network and allow it to consume less memory.(37) 
	 The search process of the A* algorithm is as follows:(34)

Step 1	 Mark the initial node and join it to the unmarked subsequent node or the child node.
Step 2	 Calculate the heuristic function value for each subsequent node, sort these values in 

numerical order according to the value of the heuristic function, and identify and mark 
the node with the minimum heuristic function value. The search is continued until the 
current node becomes the target node.

Step 3	 Record the shortest path if the current node is not the target node.
	 The definition of the heuristic function is the key point to the A* algorithm. Expressed as Eq. 
(7), it starts with the idea of finding a minimum cost path by intuitively using the Euclidean 
distance heuristic. The cost function g( j) is also calculated using the Euclidean distance, as 
shown in Eq. (8). A path diagram with the cost of nodes is shown in Fig. 13.

	 ( ) ( ) ( )22*
j goal j goalh j x x y y= − + − 	 (7)

	 ( ) ( ) ( )2 2
j c j cg j x x y y= − + − 	 (8)

Fig. 13.	 (Color online) Path diagram with the cost of nodes.
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	 Here, (xj, yj) is the position of node j, (xgoal, ygoal) is the location of the goal point, and (xc, yc) 
is the position of the initial point. Because our route searching method is used for real-time 
dynamic WMR control, the initial point is simply the current position of the WMR. The route 
searching algorithm is only applied when there are obstacles in the direction from the WMR to 
the goal; without any obstacles, the optimal path will be the direct route. When the WMR moves 
to the first node of the shortest path, it will continue to calculate the cost of other nodes and then 
move to the second node of the shortest path. The WMR will continue to move and plan the path 
iteratively until it reaches the desired goal point.
	 Although the A* algorithm method can quickly achieve path planning, there are two cases of 
the estimation function h*( j) that will affect the optimal path solution.(35)

	 Case 1: If h*( j) is less than or equal to the actual distance from node j to the target node, it 
will consider more search points and have a larger search range and low efficiency, but it will 
also reach the optimal path solution.
	 Case 2: If h*( j) is greater than the actual distance from node j to the target node, it will 
consider fewer search points and have a smaller search range and higher efficiency, but it cannot 
be guaranteed to reach the optimal path solution.
	 We considered the above two cases and improved h*( j) to ensure that the efficiency was 
higher and that it found the optimal path solution. Another equation, P(path), was introduced to 
improve h*( j). P(path) was defined as the path cost, expressed as(35)

	 ( ) t path c disP path w t w P= + ,	 (9)

where tpath is the required time to traverse the path, Pdis is the cost of the path distance, and the 
weight factors wt and wc satisfy wt + wc = 1. Replacing h*( j) with P(path) in Eq. (6) improved 
the estimation function. Combining Eq. (8) with Eq. (9) resulted in the following new cost 
function:

	 ( , ) ( , ) ( , ) ( , )t c disf i j g i j w t i j w p i j∗ = + + , 	 (10)

where g(i, j) is the distance from node i to node j, t(i, j) is the time required by node i to transverse 
the path to node j, and Pdis(i, j) is the distance from node i to node j. The improved estimation 
function reduces the search time and improves the search efficiency; thus, it was used in the 
navigation of the actual path.

4.2	 Fuzzy controller for obstacle avoidance

	 For collision avoidance, it was necessary to consider how to move the WMR safely along the 
shortest path at a constant speed. The minimum safe distance between the WMR and obstacle 
was set at 30 cm. An LMS100 laser sensor was placed on the WMR as shown in Fig. 14, where 
the 45° angle of the laser sensor on the WMR is marked as LR, the measured distance is marked 
as dr, the 90° angle is marked as LF, the measured distance is marked as df, the 135° angle is 
marked as LL, and the measured distance is marked as dl.
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	 After using the A* algorithm to find the shortest path node, the WMR required avoidance 
control to move safely along the shortest path. Fuzzy theory was applied to avoid obstacles on 
the path.(36) The fuzzy control structure had three inputs and one output. The signals from 45°, 
90°, and 135° relative to the LMS100 sensor were the inputs, and the signal represented the 
distance. The fuzzy sets of the inputs were set as F (far), M (medium), and N (near). Output A 
was the angle for turning right or left, and the fuzzy sets of the output were RB, RS, Z, LS, and 
LB. The fuzzy rules were as follows:
	 Rule 1: If LL is F, LF is F, and LR is F, then A is Z.
	 Rule 2: If LL is M, LF is F, and LR is F, then A is Z.
	 Rule 3: If LL is N, LF is F, and LR is F, then A is RS.
	 Rule 4: If LL is N, LF is N, and LR is F, then A is RB.
	 Rule 5: If LL is N, LF is N, and LR is M, then A is RB.
	 Rule 6: If LL is N, LF is M, and LR is M, then A is RS.
	 ⁞
	 Rule 26: If LL is F, FL is M, and RL is N, then A is LS.
	 Rule 27: If LL is F, FL is N, and RL is N, then A is LB.

5.	 Experimental Results

	 The LMS100 laser sensor used in the experiment had a scanning angle from −45° to 255°. 
Therefore, the maximum effective surrounding angle of the robot set in the simulation was 270° 
and the minimum safe distance was 50 cm. Figure 15 shows the simulation results when the A* 
algorithm was used to find the shortest nodes and fuzzy obstacle avoidance was used to reach 
the goal point in different environments, which were labeled as Map-1, Map-2, and Map-3. 
	 Figure 16 shows the simulation results obtained using the improved A* algorithm to find the 
shortest path. A virtual wall was added to the edge value to represent a safe distance, as shown 

Fig. 14.	 Input variables of the WMR from the LMS100 sensor.
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by the green wall in the figure. A comparison of the total path lengths found using the A* 
algorithm and improved A* algorithms is shown in Table 1. The path length found using the 
improved A* algorithm was shorter than that found using the A* algorithm.
	 A goal point was set at N25.14981472438608 and E121.77759770036515 in the initial setup of 
Map-3. The control scheme and image searching in the experiment consisted of path finding 
using the A* algorithm, safe moving, and target searching. Figure 17 shows the WMR moving 
along the shortest path, avoiding an obstacle, and reaching the goal in the Map-3 environment. 
After reaching the goal, the WMR searched for the desired target (which was colored yellow) 
and moved to the target. 
	 The WMR starts at a starting point and uses the environmental data from the laser sensor 
[Fig. 17(a)], then finds the first node of the shortest path [Fig. 17(b)]. The WMR moves along the 
shortest path to the first node and maintains a safe distance from the obstacles [Fig. 17(c)], then 
reaches the turning point, after which it turns to the front line and obtains the second cluster 
from the laser sensor [Fig. 17(d)]. The WMR finds the second node of the shortest path [Fig. 
17(e)], then moves along the shortest path to the second node and maintains a safe distance from 
the obstacles [Fig. 17(f)]. The WMR reaches the second turning point, turns to the front line to 
obtain the third cluster from the laser sensor [Fig. 17(g)], and then finds the third node of the 

(a) (b) (c)

Fig. 15.	 (Color online) Effective surrounding angle of the robot: (a) Map-1, (b) Map-2, and (c) Map-3.

(a) (b) (c)

Fig. 16.	 (Color online) Simulation results when the virtual safe distance was set to 60 cm: (a) Map-1, (b) Map-2, and 
(c) Map-3.

Table 1
Total path lengths in cm for A* algorithm and improved A* algorithm.
Map A* algorithm Improved A* algorithm
Map-1 1.0801 × 103 1.0324 × 103

Map-2 1.0893 × 103 1.0459 × 103

Map-3 1.0903 × 103 1.0474 × 103
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(c) (d)

(e) (f)

(g)

Fig. 17.	 (Color online) WMR moving along the shortest path, avoiding obstacles, reaching the goal, then finding the 
desired target in the Map-3 environment.

(h)

(a) (b)

(i) (j)
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shortest path [Fig. 17(h)]. The WMR moves along the shortest path to the third node and 
maintains a safe distance from the obstacles [Fig. 17(i)], reaches the third turning point, and then 
turns to the front line to obtain the fourth cluster from the laser sensor [Fig. 17(j)]. The WMR 
moves in a straight line along the shortest path and maintains a safe distance from the obstacles, 
reaches the goal point [Fig. 17(k)], and then rotates and searches for the target [Fig. 17(l)]. The 
WMR finds and approaches the target [Fig. 17(m)], and then reaches the target [Fig. 17(n)]. 
Figure 18 shows the track of the WMR in the Map-3 environment.

(k) (l)

(m) (n)

Fig. 17.	 (Color online) (Continued) WMR moving along the shortest path, avoiding obstacles, reaching the goal, 
then finding the desired target in the Map-3 environment.

Fig. 18.	 (Color online) Actual track of the WMR in the Map-3 environment (red dashed line).
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6.	 Conclusions

	 We integrated a laser sensor and a DGPS with the A* algorithm and a fuzzy system for 
collision avoidance and image processing. A laser sensor was utilized to detect the locations of 
obstacles and provide their edge values. The edge values were applied to the A* algorithm to 
search for the shortest path for a WMR. Then, the DGPS was used to obtain the WMR and 
destination positions. A webcam was used to capture the surrounding images, which were 
transformed from the RGB color space to the HSL color space. The HSL color space was applied 
to reduce the light interference. An image threshold was set for image binarization, and the 
median filter was applied to filter out noise in the image. Color segmentation could thus be 
obtained and the desired color could be captured. The captured color target was then used for 
tracking control during the rescue task. Obstacle avoidance control was based on a fuzzy system, 
and the controller was coded using MATLAB. Hardware was implemented using LabVIEW 
2010 to realize the human–machine interface. Through the information obtained from the 
DGPS, the laser measurement, and the webcam, the locations of the WMR and the obstacles 
were obtained. The distance between the WMR and the desired target was calculated and the 
WMR was automatically controlled without whole-map information. The desired target was 
reached by using the positioning, path finding, fuzzy collision avoidance, and image searching. 
The experiments showed that the proposed control scheme could successfully drive the WMR to 
a prescribed destination and search for the desired target.
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