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 Rancidity data can be used in various fields such as the quality analysis of food and raw 
materials used for construction.  The rancidity of raw materials used in road pavement asphalt 
is currently only at the level determined by the temperature or visual factors.  Although 
construction workers are managed individually and subjectively, such as by visual methods, 
they cannot be managed in practice.  In this paper, we propose a system combining a 
rancidity sensor with an Internet of Things (IoT) communication module that collects and 
predicts rancidity measurements in real time at a site.  The values measured by the sensor 
are periodically transferred to the Cloud through the IoT communication module, the validity 
of the data set is established, and the systematic management of the data is performed using 
machine-learning-based data analysis techniques.  The results of an experiment showed a 
high classification prediction accuracy of 91.3% and a short-term pattern prediction accuracy 
of 96.6% (weighted scaling), confirming its excellent potential for raw material quality 
management.  The results of this paper will be applied as a road pavement quality management 
system.

1. Introduction

 Rancidity data can be used in diverse areas such as the quality analysis of food and raw 
materials for construction, and rancidity measurement is becoming an important method of 
determining the state of raw materials.  In the case of oil used for frying food, the rancidity of 
the oil is measured by using a paper or from experience (such as how many times it has been 
used to fry chicken) in general restaurants, making accurate measurements difficult.  The 
rancidity of raw materials used for pavement asphalt is determined merely by the temperature 
or visual estimation.  Although rancidity can be managed by subjective measurement methods, 
such as a visual method and individual control, its systematic management at each position is 
not possible.  Studies on systems allowing the transmission of measured data for monitoring and 
management and methods of analysis are scarce.  In existing studies, although rancidity sensors, 
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particularly those for edible oils were investigated,(1–3) the development of sensors combined 
with communication modules for the collection or analysis of data is insufficient.(4,5)

 The system proposed in this paper allows the real-time collection of rancidity measurements 
in the field and predictive analysis by coupling rancidity sensors and an Internet of Things 
(IoT) communication module.  It periodically transmits the values of rancidity measured by 
sensors to the Cloud via the IoT communication module, constructs a data set of rancidity, and 
performs the systematic management of rancidity measurements using data analysis techniques 
based on machine learning.  By integrating the data transmitted to the Cloud to construct the 
data set and processing the data to construct a training set, we have proposed a system that 
allows classification and short-term predictions.  The proposed system is provided through a 
mobile application or the web and enables the extraction of a quality management pattern for 
rancidity by applying an IoT rancidity sensor and an intelligent data analysis technique.  In this 
system, real-time monitoring and quality management are possible as features are extracted 
from the patterns, and quality management levels are classified through time series analysis 
to classify and predict the quality states of rancidity and to predict changes in quality so as to 
enable real-time monitoring and quality management.  By the rational use of materials and the 
construction of a quality management system, the reliability of the quality of raw materials 
can be enhanced.  Additionally, as reported in the paper, experiments on quality management, 
classification, and prediction as well as the prediction of changes in patterns have been carried 
out with the proposed system (Fig. 1) by using the developed IoT sensors to collect actually 
measured data from restaurants using oil for a given period.  According to the results of the 
implementation, high accuracies for a classification prediction accuracy of 91.3% and a short-
term pattern prediction accuracy of 96.66% were observed, confirming the excellent potential 
of the proposed system for the quality management of raw materials.

2. Related Works

2.1 Machine learning methods for IoT data analysis

 IoT is set to revolutionize all aspects of our lives.  The number of objects connected to 
IoT is expected to reach 50 billion by 2020, giving rise to an enormous amount of valuable 

Fig. 1. (Color online) Proposed system.
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data.(6,7)  The data collected from IoT devices will be used to understand and control complex 
environments around us, enabling better decision making, greater automation, and higher 
efficiency, productivity, accuracy, and wealth generation.  Data mining and other artificial 
intelligence methods will play a critical role in creating smarter IoTs, albeit with many 
challenges.  There are eight well-known data mining algorithms for IoT data.  These include 
deep learning artificial neural networks (DLANNs), which build a feedforward multilayer 
artificial neural network (ANN) for modelling high-level data abstractions.  In Ref. 7, the results 
of three real IoT datasets show that C4.5 and C5.0 have higher accuracies, are memory-efficient, 
and have relatively higher processing speeds.
 ANNs and DLANNs can provide highly accurate results but have high computation cost and 
complexity.(8)  Through the performance comparison of eight typical algorithms, the efficiency 
of IoT and machine learning algorithms was assessed, and each feature was presented in Ref. 6.  
As such, the technology is being used in various fields ranging from data collection to analysis 
and prediction in conjuction with IoT sensors and machine learning methods.(9,10)

2.2 Support vector machine (SVM)

 The classification model was constructed using the SVM as the machine learning model.  
The basic principle of the SVM begins with the classification of SVM input patterns into two 
classes {+1, −1} through supervised learning.  When training groups are classified into two 
classes, the hyperplane that separates the training patterns can be determined.  The hyperplane 
here refers to the cutting plane that separates individual groups.  The boundaries of the patterns 
determining this plane are called support vectors.(11)

 There are three key stages in the SVM algorithm. The first is to find the boundaries, the 
second to find the hyperplane that maximizes the margin or distance of the hyperplane from 
each boundary, and the last to determine which side of the hyperplane the given test record 
belongs to.(12)

• Find boundary of each class
 The outline obtained when all points corresponding to one class in the data set is the 

boundary of the class.  Figure 2 shows a boundary, which is referred to as the convex hull (Fig. 3).  
Each class has its own convex hull, and the convex hulls of different classes do not intersect.

Fig. 2. (Color online) Principle of SVM.(10) Fig. 3. (Color online) Convex hull in SVM.(10)
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• Find the best hyperplane to satisfy conditions
 When finding the hyperplane, a mathematical method is employed, where any hyperplane 

has two attributes of x1, x2 as follows, and an expression such as H: b + ω = 0 is given.  
Examining this expression, we have x = (x1, x2) and b is an intercept called the deflection.  
This expression is similar to the standard form of a linear equation, and the equation 
describing the optimum hyperplane is given as H0: b0 + ω0 = 0.  The margin is given by 
Margin = 0 02 ω ω .  From this expression, the optimum hyperplane is obtained.

• Classification of test records
 Once the boundaries and the hyperplane are determined, it is calculated on which side of the 

hyperplane a new test record to be classified lies.  This can be done easily by substituting the 
test record x into the mathematical expression for the hyperplane.  If the calculated value is 
+1, it belongs to the positive class, while it belongs to the negative class in the case of −1.

• Features
 The SVM is an algorithm used for classification and prediction together with such 

algorithms as decision-making trees and neural networks.  It is a model allowing the linear 
transformation of the training set, which shows better performance, making it easier to 
transform the data set.

3. Intelligent Rancidity Analysis System Based on IoT

 The proposed system can transmit the sensor data by using rancidity sensors capable of 
measuring temperature and rancidity and by coupling a Bluetooth communication module to 
the sensors.  Figure 4 shows a hardware of rancidity sensors.  Sensors and modules are designed 
and developed, and the data measured by the sensors is transmitted to the data collection server 
via gateway.  By installing one gateway for each field, the gateway transmits rancidity and 
temperature data, and these gateways will later be developed into diversified IoT gateways in an 
expandable form.(11,13)  For the data analysis module, an algorithm that supports a classification 
function (rancidity quality state) and a prediction function (quality change) based on the 

Fig. 4. (Color online) Rancidity sensor.
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rancidity measurements has been proposed by our other studies.  It employs a newly developed 
technology that analyzes to enable control and management from the viewpoint of monitoring 
and maintains the rancidity of raw materials.  Figure 5 shows the process of our proposed 
system.  The communication protocol between the sensor and the server is shown in Fig. 6.  
The data measured by sensors is transmitted to the gateway via the Bluetooth communication 
module, then the gateway processes the data according to the prescribed protocol for 
transmission to the server.
 The data transmitted by using the protocol in Rest API form is collected, saved, and 
managed through a data collection server based on a web application server that enables real-
time monitoring.  Data analysis is carried out in the analysis module using the collected data.  
Discussed in detail below are the contents of the analysis module.

3.1	 Model	for	quality	classification	and	prediction	

 The classification and prediction functions respectively classify and predict the quality 
states through the proposed classification model based on machine learning, as well as identify 
and evaluate the current quality state following the identification of management levels.  
Through the model obtained by the accumulation of data, a standardized data model allowing 
the identification of oil management states is constructed.  The classification function is 
characterized as follows.  

Fig. 5. (Color online) Process of proposed system.

Fig. 6. (Color online) Communication protocol.
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1. Signal preprocessing and feature extraction from the rancidity pattern as a function of the 
time flow of the location using each raw material.

2. Labeling of the existing data according to the prescribed levels with the quality management 
level determined by prior knowledge as a target variable (Good, Normal, Poor, or Very Poor).

3. Management label classification by generating an analysis model through data learning and 
by inputting data collected from individual businesses.

4. In the present module, each feature from the data collected for 500 days has learning sets 
constructed using feature sets with the current rancidity, the average rancidity for day 
D-1, the weekly average rancidity, and the monthly average rancidity.  Each training set is 
constructed from data for 100 days to generate an SVM model.  When the data of a new time 
window is inputted from the generated model, quality levels are classified and predicted.  

3.2 Prediction model for short-term quality patterns

 In the prediction function for short-term patterns, patterns for a given time section are 
identified to determine the quality change times in the levels according to quality, and the 
quality change pattern for the next time section is predicted.  Through the prediction of quality 
changes, quality management can be performed by predicting replacement times for the raw 
materials, the state changes of the original material, and so forth.  To generate a prediction 
model, an autoregressive integrated moving average (ARIMA)(14) was applied.  
 Real-time series data are frequently nonstationary.  However, the AR(p), MA(q), or ARMA(p, q) 
model combining these two cannot explain such a nonstationary aspect.  Therefore, the model 
used to remove such a nonstationary aspect from the model is the ARIMA model itself, which 
is expressed as ARIMA(p, d, q).(15)

 In the prediction module, the ARIMA model has been designed using actually measured 
data in the unit of 1 over one day and then changes in the data for 1 h are predicted later.  Since 
rancidity usually increases over time then decreases again at the time of material replacement, 
the ARIMA model is suitable for our application.

4. Experiments and Results

4.1 Environment of experiment

 We performed various experiments.  The environment used in the experiment is shown in 
Table 1.  The rancidity sensor used a sensor we developed in another study.(16)  Because we 
implemented it on the web, we used a server/client model.

4.2	 Experiment	on	quality	management	level	classification

 In the classification experiments on quality management labels, actually measured data 
were generated to produce a measured data set for 500 days, using feature sets prepared with 
the current rancidity, yesterday average rancidity, weekly average rancidity, and monthly 
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average rancidity for the construction of the training sets.  By constructing a total of 10 training 
sets with 100 cases of data each composed of feature sets, as shown in Table 2, a model was 
produced by using the SVM from each learning set, and the performance of the model was 
verified using the test set.
 Experimental results outputted by inputting the test set in the model made from individual 
training sets are shown below.  The total number of data for the data set is 101, with the 
data level composition of 16 for Good, 57 for Normal, 6 for Poor, and 22 for Very Poor.  
Measurements were made to determine whether the existing label and the label results predicted 
by the models were accurate.  According to the experimental results with the same test sets 
used as 10 training sets (Table 3), the prediction accuracy of the final average classification was 
found to be 91.3%.  From the experimental results obtained using the actually measured data, 
it was found that the prediction model of the SVM quality management label showed excellent 
performance.

4.3 Experiment on prediction of short-term quality

 In the next experiment, short-term quality was predicted using the ARIMA model for 
the data collected through the developed rancidity sensor.  The accuracy was calculated by 
determining whether the predicted values were similar to the rancidity values actually measured 

Table 1
Experimental environment.

H/W

Spec Server CPU: Xeon E5-2620 V4 2.10GHz, RAM: 16GB, HDD: 1TB
Client PC - CPU: Intel i3, RAM 8GB, HDD: 500GB

Others Rancidity Sensor (Prototype)
Gateway (Prototype)

Network

TCP/IP, Wireless (802.11 a/b/g, Bluetooth 3.0)
Internet Connection
Bluetooth Communication: Rancidity Sensor between Gateways
Gateways need Wi-Fi

Table 2
Example of data set (feature vector).

last_tpm yesterday_avg week_avg month_avg Label
3.648975 13.50599 17.4445 21.90117 Worst

14.42922 5.942104 9.601589 20.29518 Bad
11.49904 13.30067 8.872905 19.3767 Normal
0.837204 6.805848 19.06439 16.5985 Normal

12.52121 3.259982 11.57299 16.09325 Normal
24.00901 4.174409 9.622527 16.47212 Normal
15.38219 10.75225 13.92565 17.91679 Normal
29.07552 29.49387 9.417462 8.861963 Normal
14.83151 5.564978 17.78125 25.01788 Worst
18.23382 20.55519 4.831567 19.45893 Normal

Table 3
Training sets.
Training set Number of data Accuracy (%)
1 100 95
2 100 95
3 100 94
4 100 87
5 100 92
6 100 89
7 100 89
8 100 91
9 100 91

10 100 91
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Table 4
Results of comparison using data set 1.

Actual value Prediction value Error
am 2:43:21  8  7.867626 0.132374
pm 2:31:03  8.7  8.527008 0.172992
pm 3:31:03  8.7  8.664343 0.035657
pm 4:20:03  8.7  8.692595 0.007405
pm 5:31:03  8.9  8.856986 0.043014
pm 6:24:03  9.1  9.049657 0.050343
pm 7:49:24  9.9  9.725352 0.174648
pm 8:39:24  11  10.75061 0.249393
pm 9:49:24  12.8  12.44614 0.353858
pm 10:39:24  13.5  13.33842 0.161585

0.138127

Table 5
Results of comparison using data set 2.

Actual value Prediction value Error
pm 9:49:24  13.1  13.09806 0.001939
pm 10:39:24  13.5  13.49315 0.006846
pm 11:43:21  14.1  14.09212 0.007885
am 12:43:21  5  5.985541 0.985541
am 1:43:21  7.5  7.363382 0.136618
am 2:43:21  8  7.867626 0.132374
pm 2:31:03  8.7  8.527008 0.172992
pm 3:31:03  8.7  8.664343 0.035657
pm 4:20:03  8.7  8.692595 0.007405
pm 5:31:03  8.9  8.856986 0.043014

0.153027

Fig. 7. (Color) Results of comparison using data set 1.

Fig. 8. (Color) Results of comparison using data set 2.

in the field using edible oils.  We collected and predicted data using the following order.
1. Receive actually measured values of rancidity in the field.
2. Generate a prediction and analysis model for the rancidity values collected thus far through 

data learning and predict the next values whenever new data are received.
3. Predict rancidity values on previous dates and determine the prediction accuracy by 

comparison with actually measured values.

The data are configured as follows.
• Data set 1: Measured data of rancidity (04/05 21:10–04/06 15:27 in 2018) (Fig. 7 and Table 4)
• Data set 2: Measured data of rancidity (04/06 01:57–04/06 20:49 in 2018) (Fig. 8 and Table 5)
• Data set 3: Measured data of rancidity (04/06 16:28–04/07 01:43 in 2018) (Fig. 9 and Table 6)
• Data set 4: Measured data of rancidity (04/06 21:49–04/07 17:31 in 2018) (Fig. 10 and Table 7)
• Data set 5: Measured data of rancidity (04/07 02:43–04/07 23:39 in 2018) (Fig. 11 and Table 8)

Experimental results for each data set are as follows.  
 We repeated each experiment 10 times and measured the average of the accuracy results.  
According to the standard deviation and dispersion results, individual error values do not show 
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Fig. 9. (Color) Results of comparison using data set 3.

Table 6
Results of comparison using data set 3.

Actual value Prediction value Error
pm 4:28:32  8.9  8.833409 0.066591
pm 5:27:34  10  9.891838 0.108162
pm 6:49:24  12.1  12.01121 0.088785
pm 7:49:24  12.5  12.48975 0.010254
pm 8:49:24  13  12.99051 0.009493
pm 9:49:24  13.1  13.09806 0.001939
pm 10:39:24  13.5  13.49315 0.006846
pm 11:43:21  14.1  14.09212 0.007885
am 12:43:21  5  5.985541 0.985541
am 1:43:21  7.5  7.363382 0.136618

0.142211

Table 8
Results of comparison using data set 5.

Actual value Prediction value Error
pm 9:10:14  12.6  12.78946 0.189456
pm 10:56:57  12.8  12.80312 0.003125
pm 11:56:59  13.2  13.33049 0.13049
pm 11:57:01  13.3  13.29026 0.009743
am 12:57:03  5  3.675421 1.324579
am 1:57:03  6  5.984192 0.015808
am 2:57:03  7.8  7.567255 0.232745
pm 1:27:25  8.1  8.043904 0.056096
pm 2:27:27  8.2  8.182944 0.017056
pm 3:27:29  8.3  8.287114 0.012886

0.199198

Table 7
Results of comparison using data set 4.

Actual value Prediction value Error
am 1:57:03  6  5.984192 0.015808
am 2:57:03  7.8  7.567255 0.232745
pm 1:27:25  8.1  8.043904 0.056096
pm 2:27:27  8.2  8.182944 0.017056
pm 3:27:29  8.3  8.287114 0.012886
pm 4:28:32  8.9  8.833409 0.066591
pm 5:27:34  10  9.891838 0.108162
pm 6:49:24  12.1  12.01121 0.088785
pm 7:49:24  12.5  12.48975 0.010254
pm 8:49:24  13  12.99051 0.009493

0.061788
Fig. 10. (Color) Results of comparison using data set 4.

Fig. 11. (Color) Results of comparison using data set 5.

a large difference (small dispersion: 0.002448) or a change (small standard deviation: 0.0494).  
The accuracy of the error for overall predicted values can be determined by using average 
errors of the data.  Since the deviation and dispersion are small, the accuracy of the model is 
considered to be excellent.
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Table 9
Results of accuracy.

Scale 0–100 Scale 1–24
Accuracy (%) 99.862 96.668

 The range of the average error for data sets 1–5 was about 0.138 from the actual values.  
Since rancidity values have a range of 0–100, the prediction accuracy calculated from the 
average value of the error is about 99.862% on the relevant scale (Table 9).  Apart from that in 
special cases, the actual rancidity does not exceed 24.  If managed normally, the error is about 
3.332 when the accuracy is computed by adjustment for a rational range so that the accuracy is 
determined to be about 96.668%.  Consequently, from the accuracy result, the performance of 
the model for short-term quality prediction in the present system is considered to be excellent.

5. Further Study and Conclusion

 In this study, sensors allowing the measurement of rancidity have been developed, and 
a communication device capable of transmitting measurement data to the network has been 
proposed to analyze data obtained from the sensors.  In addition, a data analysis system has 
been constructed, and a system where rancidity states are determined and changes are predicted 
by the analysis of the collected rancidity data by machine learning has been proposed.  
 The proposed system is an intelligent system that allows the monitoring of the rancidity 
of raw materials in the field by real-time measurement, the determination of quality states 
for raw materials through analysis, and the prediction of changes.  For the verification of the 
performance, the performance of the sensors has been evaluated by measuring the rancidity 
of oils at actual businesses.  In addition, classification and prediction experiments have been 
performed by analyzing the collected data using the proposed technique.  The results showed 
excellent performance levels of 91.3% for classification and 96.668% for prediction.  
 For further study, the development of a dispersion processing system capable of real-time 
processing/analysis is planned once multiple data have been collected from experiments using 
raw materials other than oil and multiple sensors.  Figure 12 schematically shows joint cutting 
using IoT and bigdata analysis in a road pavement quality management system.  The proposed 
system can be applied as a quality control system in various fields when combined with not 
only saturation sensors but also widely available temperature sensors.  As a representative 
application, data are being collected using IoT for road pavement quality management and 
building information modeling (BIM) area construction, and raw material and construction 
quality management is being studied.  In the case of asphalt and concrete, rancidity, temperature, 
and humidity are important quality control factors.  Therefore, analyzing and predicting the 
changes in rancidity, temperature, and humidity can predict the quality characteristics (e.g., 
strength) of asphalt and concrete.  According to the analysis results, it is possible to predict the 
optimal timing of the construction process such as joint cutting.  The training set consists of IoT 
sensor data, temperature, rancidity, humidity, weather data, and source information data.  The 
data set is redefined as feature vectors based on factors that affect the strength of concrete.  
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 Figure 13 shows a system for further study.  We will study a road pavement quality 
management technology that can provide automated information using IoT and a big data 
platform.  The system collects data from actual sites, such as rancidity using IoT sensors.  
We will analyze the road paving quality by analyzing the data using the accelerated big data 
platform and providing the prediction data.

Fig. 12. (Color) Application of IoT sensor data analysis using machine learning to road pavement quality 
management.

Fig. 13. Further study: road pavement quality management system using IoT bigdata platform.
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