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 In urban environments, the location accuracy of autonomous vehicles and unmanned aerial 
vehicles (UAVs) using navigation systems may be degraded because the global navigation 
satellite system (GNSS) positioning accuracy is degraded owing to satellite visibility or 
multipath signals.  Therefore, to ensure the safety of autonomous navigation systems, we need 
technologies that can recognize or predict changes in the GNSS observation environment when 
vehicles enter areas with severe reception conditions.  In this study, we developed an algorithm 
determining the GPS signal shadowing range that can be blocked by nearby obstacles at a 
specific grid point.  To evaluate the algorithm, we collected GPS signals in the test area and 
analyzed the signal characteristics by overlapping the satellite trajectory and satellite signal 
shadowing area modeling results.  As a result of the experiment, GPS signals were received in 
the satellite invisible area owing to the multipath effect, but the data continuity was reduced in 
the corresponding satellites, and L2 signals were disconnected or the amplitude of the vibration 
of MP1 was significantly larger than that of the visible satellites.  Therefore, the SEM generation 
algorithm is expected to improve the positioning accuracy of autonomous navigation systems by 
removing multipath signals and simulating the observation environment of the GNSS receiver.

1. Introduction

 Autonomous driving systems are composed of body control technologies that reflect the 
decisions made by artificial intelligence (AI) based on accurately recognizing the driving 
environment and situation.  Precise kinematic positioning technology is a key technology 
of autonomous driving systems because the location of the vehicle needs to be accurately 
expressed on high-definition (HD) maps to accurately recognize the driving environment.  The 
sensors used for positioning vehicles include the global navigation satellite system (GNSS) and 
inertial navigation system (INS), and autonomous vehicles use GNSS/INS positioning systems, 
which combine these two systems to complement each other’s strengths and weaknesses.  
RADAR, LiDAR, optical sensors, and ultrasonic sensors are also applied to improve safety by 
supplementing the positioning and situational awareness performance of vehicles.  
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 Similarly to autonomous vehicles, unmanned aerial vehicles (UAVs) also use autonomous 
navigation systems.  The latest UAV technologies focus on efficiency and economic feasibility to 
achieve the desired purpose with less manpower and resources than conventional technologies, 
and the technology trend is aimed at autonomy or unmanned applications by introducing 
autonomous navigation technologies as in the case of autonomous vehicles.  UAVs are used at 
lower altitudes than aircraft, so they must avoid collisions with ground structures.  Although 
obstacle avoidance technologies using ultrasonic or optical sensors are being developed,(1,2) 
positioning accuracy is also important in the application of UAVs and autonomous vehicles in 
urban areas with many high-rise buildings.(3)  Radišić et al. pointed out that the environmental 
characteristics of urban areas may affect the surveillance and navigation of UAVs.(4)  
Zimmermann et al. proposed a method to ensure the accuracy of UAV mapping results by 
improving the GNSS positioning accuracy of UAVs by applying a 3D model-based shadow 
matching technology.(5)  Studies were also carried out on how to use 3D spatial information to 
support the situational awareness of UAVs, such as the HD maps used in autonomous vehicles.(6,7)  
These recent studies imply the need to secure safety for autonomous navigation systems such as 
autonomous vehicles and UAVs.
 Conventional techniques for reducing the GNSS multipath effect include antenna-based 
mitigation and improved receiver technologies, which use antennas such as choke rings and 
ground planes, and signal and data processing methods.(8)  Recently, the spread of drones 
and the development of drone-based mapping technologies have made it easier to build high-
resolution 3D terrain data than in the past, which has led to the development of technologies that 
apply 3D spatial data in areas such as autonomous vehicles and ground survey planning.(9,10)  In 
Korea, research is being performed on a 3D grid system as a data frame for implementing digital 
twin and UAV traffic control that can link various data of cities in cyberspace.(11)  In addition to 
the sensors in autonomous navigation systems, such grid-based geospatial information could be 
used as a way for machines to recognize the real world.  In addition, grid-type 3D models can 
be applied to various applications as they make it easier to reduce the data volume and apply 
physical simulations than vector-based 3D models with complicated geometric relationships.  
 In autonomous navigation systems, the positioning in outdoor environments is mainly 
performed through GNSS.  Although the absolute location of the user can be determined by 
using GNSS, positioning becomes impossible in environments where minimal GNSS satellites 
cannot be observed, such as tunnels, and the positioning accuracy is degraded in areas where 
obstacles block signals, such as in urban areas.  Providing GNSS satellite signal coverage 
information reflecting ground obstacles to autonomous navigation systems can contribute to 
improving the positioning accuracy by removing the satellite signals in the non-line-of-sight 
(NLOS) area, such as multipath signals, to calculate the location of the vehicle.  In addition, 
the GNSS observation environment models can increase the safety of autonomous driving by 
improving positioning accuracy.
 The line-polygon collision test method was previously developed to simulate the GNSS 
satellite observation environment by analyzing the line-of-sight (LOS) area between observation 
points and satellites.(12)  However, this method requires 3D vector information, which makes 
it difficult to identify the complex geometric relationships between the locations of users 
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and satellites, and the information on obstacles such as buildings.(13)  Manual work was also 
necessary for 3D modeling to use 3D vector information to analyze GNSS visibility because we 
need to use 3D building models fused with terrain information or the values of substituting the 
altitude information for the building vectors extracted from the digital map.  On the other hand, 
grid-based ground object modeling can easily build high-resolution spatial data even in areas 
without 3D models by semiautomatically constructing a digital surface model (DSM) using 
mapping technologies based on drones.  
 In this paper, we proposed a method to model the GNSS observation environment based on 
DSM, a grid-based 3D model constructed through drone mapping.  In general, GNSS receiver 
firmware or postprocessing software includes a function to set the elevation mask that removes 
satellite data below a certain elevation to reduce the multipath effect of low-altitude satellites.  
In this paper, we developed an algorithm that automatically models the range of GNSS satellite 
signals (azimuth, elevation) that may be blocked by surrounding obstacles at a point inside the 
DSM data, and defined this model as the surface elevation mask (SEM).  When a point in the 
DSM area is selected as the target point to generate the SEM, the SEM generation algorithm 
implements a straight line from the target point using the equation of a straight line in the image 
for every azimuth and determines the maximum elevation angle among the elevation angles 
calculated through the elevation values of the checkpoints and the target point on each straight 
line.  In Sect. 2 we explain the SEM generation algorithm and, in Sect. 3, we explain the result 
of GPS observation data analysis in the testbed area.  We also analyzed the SEM modeling 
results and GPS satellite signal observations to evaluate the modeling results and analyze the 
GPS data characteristics in areas with severe reception conditions.  

2. Development of SEM Generation Algorithm

 The SEM generation algorithm is used to calculate the range of azimuth and elevation angles 
in which GNSS satellite signals can be blocked with obstacles at specific target points based 
on the DSM.  The SEM generation algorithm is also used to calculate the maximum signal 
shadowed elevation angle in a specific azimuth direction from the target point and compute 
omnidirectional maximum signal shadowed elevation angles through an iteration procedure.  
Figure 1 shows a flowchart of the SEM generation algorithm described in Sect. 2.  In this paper, 
the interval of theta (n) was 1°.
 To implement the SEM generation algorithm, we need a grid-based data that reflects the 
height of buildings and surface elevation information from the ground.  We can use the DSM 
generated by processing drone aerial photos or grid-based urban 3D models as the surface 
elevation information data.  In this study, we used spatial information established by drone 
mapping the premises of the Korea Institute of Civil Engineering and Building Technology 
(KICT) to develop and evaluate the SEM generation algorithm.  Drone mapping for orthophoto 
and DSM acquisition was performed with the Sony RX100 M2 camera mounted on a quadrotor 
UAV.  The aerial photographs were taken at 75% sidelap and 80% forward overlap, and six 
ground control points (GCPs) were installed on the ground.  A total of 241 aerial photographs 
taken from the UAV were processed using Pix4D.  The accuracy of the orthophoto was less than 
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3 cm.(14)  The ground sampling distance (GSD) of the orthophoto and DSM generated by drone 
mapping is 5 cm.  In addition, the coordinate system consists of a planar rectangular coordinate 
with the top of the image facing north.  Figures 2(a) and 2(b) show an orthophoto and a DSM 
constructed by drone mapping, respectively.  The target area is about 400 m east and 700 m 
north, and consists of a flat terrain.  There are only a few buildings over 20 m in the target area, 
but there are many buildings concentrated within the area.
 In this paper, the process of generating the SEM in the road area is shown as an example 
to describe the SEM generation algorithm.  For this purpose, we need to select a target point 
to generate the SEM in the road area.  Since it is difficult to distinguish roads from other 
areas by using only the DSM, we generated a road area layer by digitizing the road area in the 
orthophoto as shown in Fig. 2(c), where the blue and red areas represent the results of digitizing 
the building and road areas, respectively.  In practice, a separate DMS for the building area is 
not necessary, but we generated the building area layer to describe the areas where signals are 
blocked by the azimuth and elevation of the GNSS satellite.  Finally, the road area DSM was 
generated by extracting elevation information included in the road area layer from the DSM.
 The SEM generation algorithm is configured to calculate the elevation mask for all azimuths 
at 1° intervals from 0 to 359° azimuth from the target point after a specific target point i is 
selected in the road area.  To do this, when a specific grid coordinate is given as the target 
point in the DSM, the algorithm has to express a straight line for all azimuths from this point.  
Figure 3 shows the relationship between the grid coordinate system, the target point (i), the 
rotation angle (θ), and the azimuth angle (AZ), where the c-axis represents the column of the 
grid coordinates and the r-axis represents the row of the grid coordinates.  When target point 

Fig. 1. (Color online) Flowchart of SEM generation algorithm.
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i(ri, ci) is selected in the grid coordinates, a straight line ij starting from i and moving toward θ 
can be expressed as shown in Fig. 3, where j represents the grid coordinates of the checkpoint 
on the straight-line ij, and j ranges from target point i to the area of the DSM.  ρ is a normal 
perpendicular to the straight-line ij starting at the origin of the grid coordinates.  The azimuth 
angle (AZ) at target point i is clockwise starting from the N-axis of Fig. 3, and therefore, 
it is different from the rotation angle θ system starting from the E-axis of Fig. 3 moving 
counterclockwise.  To determine the grid coordinates through which the straight line moving 
from target point i(ri, ci) to the rotation angle θ passes, we can use the equation of a straight line 
based on the polar coordinates as(15)

 cos cosi ir cρ θ θ= + . (1)

Fig. 2. (Color online) (a) Test area orthophoto generated by drone mapping. (b) Experimental area DSM. (c) 
Result of digitizing the building and road areas based on the orthophoto.

(a) (b) (c)

Fig. 3. Process of determining a straight line in the θ direction from target point i.
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Here, the grid coordinates of the target point are given as the initial input values in the SEM 
generation algorithm and θ is given sequentially during the repeated calculation process with 
values from 0 to 359° at 1° intervals.  Therefore, we can determine ρ according to θ.
 Once the straight line from the target point i in the θ direction is determined, we can 
extract the grid coordinates of the checkpoints to calculate the maximum elevation angle by 
determining the coordinates of the grids on the DSM through which the straight line passes.  At 
this point, the maximum elevation angle is calculated within the range from the target point i to 
the edge of the given DSM when the straight line is extended in the θ direction.  For example, 
in terms of a straight-line ij, as shown in Fig. 3, the range of calculation may include the top or 
rightmost grid of the DSM depending on the position of the target point and the slope of the 
straight line.  If the range of calculation is selected from ri where the target point is located to 
the top range of the image, we can determine the c-axis coordinates for each checkpoint by 
using Eq. (2).  If cj is outside the range of the DSM, the corresponding section is excluded from 
the grid that needs to be analyzed.  By applying this method according to the characteristics of 
each quadrant with the target point as its origin, we can determine the coordinates of the grids 
that need to be calculated.  
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 Figure 4 shows an example of determining the maximum elevation angle calculation 
section for a straight line in a specific azimuth from the target point, which shows the results of 

Fig. 4. (Color online) Example of straight lines in each azimuth direction from the target point.  The blue and 
red areas represent the building and road areas, respectively, and the green straight lines represent the results of 
implementing straight lines for each azimuth from the target point.



Sensors and Materials, Vol. 31, No. 11 (2019) 3841

implementing straight lines in the calculation section from 0° azimuth at 45° intervals.  Here, 
the blue and red areas represent the building and road areas, respectively, and the green straight 
lines represent the results of implementing straight lines for each azimuth from the target point.
 Once the coordinates of the checkpoints are determined, we need to calculate the elevation 
angle between the target point and each checkpoint.  To calculate the elevation angle, we need 
the horizontal distance in the real world between the target point and the checkpoint and the 
difference in elevation between the two points.  The horizontal distance D from target point i to 
checkpoint j is calculated as

 ( ) ( )2 2
j i j iD s c c r r= × − + − . (3)

Here, s is the scale factor according to the DSM resolution, which is used to convert the grid 
coordinate system into the actual distance.  The elevation difference Δh between points i and j 
is determined as

 j ih h h∆ = − . (4)

Here, hi and hj represent the elevations at points i and j, respectively.  Once D and Δh are 
determined, we can calculate the elevation angle (EL) as

 1tan hEL
D

− ∆ =  
 

. (5)

 Figure 5 shows how the maximum elevation angle is determined for straight lines for 
each given azimuth.  Figure 5(a) shows the result of determining the maximum elevation 
angle calculation area by implementing a straight line for 60° azimuth from target point i.  In 
terms of comparing the three points a, b, and c, as shown in Fig. 5(b), the maximum elevation 

(a) (b)

Fig. 5. (Color online) Example of determining the maximum elevation angle.  (a) The green straight line is the 
calculation area from target point i in the direction of 60° azimuth.  (b) Elevation value and angle for the maximum 
elevation angle calculation section.  The color of the straight line represents the color of the layer including the 
calculation section (blue: building area, red: road area).
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is determined at point a where the elevation angle is calculated to be the greatest.  We can 
determine the elevation mask angle at a specific azimuth angle by sequentially calculating the 
elevations for each target grid and returning the maximum elevation angle calculated so far.  
The SEM at target point i can be determined by performing this process for all of the azimuths 
relative to the target point.
 Figure 6 shows the skyplot of the results of calculating the SEM using points d and e as the 
target points.  The green dots on the map of Fig. 6 indicate the locations of points d and e.  Point 
d is located near the parking lot where most of the buildings are in the north.  Point e has roads 
in the northeast and southeast directions, and obstacles exist at a distance shorter than point d.  
In skyplot, the red line represents the SEM and the gray color shows areas where obstacles can 
block the GNSS satellite signals.  The SEM at point d was zero from azimuth angles of 120 to 
270° because there were no obstacles in the south.  On the other hand, a relatively high SEM 
was calculated for azimuth angles in the north.  The geographical characteristics of the southern 
direction outside the area where the DSM data is built indicate an open area environment 
with some obstacles.  Therefore, to apply this algorithm to actual services, further studies are 
necessary to configure the proper horizontal range of grid data (DSM) used to determine the 
SEM.  Owing to the limited range of the DSM used in this study, we can obtain an SEM that 
reflects the GNSS observation environment of the area when there are many obstacles near the 
checkpoint as in the case of point e.

3. Results of Field Test and Data Analysis

 To evaluate the SEM generation algorithm, we examined the GPS reception results in the 
actual test area according to the observation environment.  The test was performed at point e of 
Fig. 6, where we expect many GPS signals to be blocked by obstacles.  Figure 7 shows photos 
of the field test and the surrounding obstacles.  As shown in Fig. 7, the test area consists of an 

Fig. 6. (Color online) Skyplot of calculating the SEM with points d and e on the map as grid points. The green 
dots on the map indicate the location of each target point. In each skyplot, the red line represents the SEM and the 
gray color shows areas where obstacles can block the GNSS satellite signals.
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environment where buildings exist in the northwest and southwest directions, which may block 
GPS signals, while roads exist in the northeast and southeast directions, so there will be fewer 
obstacles in the east than in the west.
 Figure 8 shows the topographical characteristics of the test area.  The green dot in Fig. 8(a) 
represents the GPS observation point and the white outer square area represents a 50 m radius 
from the observation point.  The elevation information for this area was extracted from the 
DSM, and Fig. 8(c) shows this information in three dimensions.  As shown in Fig. 8(b), the 
observation point is located in an area where we expect blocked signals because there are 
buildings to the west.  The elevation of the observation point is about 14 m, and the elevation 
difference between the buildings adjacent to the west is estimated to be more than 10 m.  The 
buildings in the east direction are farther from the observation point than those in the west, but 
we also expect blocked signals in the east.  
 The observation test was performed using a Trimble BD970 receiver module and an AV59 
antenna for static observation at 1 s epochs for about 20 min.  We performed network RTK at 
1 s intervals while recording the observation data and calculated the reference coordinates of the 
test point by averaging all of the positioning results.  The raw data acquired by observation was 
converted to the RINEX file format and preprocessed to analyze the GPS data through TEQC.(16)  
We used RTKlib,(17) an open-source GNSS data processing program, to extract observation 
data to analyze the observation results.  In terms of the navigation RINEX file required for data 
processing, we used the broadcast orbit downloaded from the NASA FTP server.(18)  Through 
RTKlib data processing, we acquired the elevation of satellites recorded in the observation 
data, azimuth information, the data acquisition status by frequency, and MP1 and MP2 data to 
check the multipath effects of the acquired signals.  MP1 and MP2 are linear combinations of 
pseudorange and phase observations, calculated as(16)

Fig. 7. (Color online) Field test photo (center) and photos of obstacles surrounding the test site. 
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α α
   = − + +   − −   
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 2 1 2
2 22 1

1 1
MP P ϕ ϕ

α α
   = − + +   − −   

. (7)

Here, P1, P2, φ1, and φ2 are the pseudorange and phase observations of L1 and L2, respectively, 
and α is a constant term calculated as the ratio of the squares of the frequencies f1 and f2 
( f12/f2

2).  The two terms MP1 and MP2 allow us to identify the daily RMS values of the L1 and 
L2 pseudorange multipaths for P code observations, respectively.
 Figure 9 shows the skyplot of overlapping the satellite azimuth and elevation information 
obtained by analyzing the SEM and GPS observation data calculated at the observation point.  
The dots representing the trajectories of the satellites are in yellow, green, red, and blue, which 
record L1, L1/L2, L1/L5, and L1/L2/L5, respectively.  The frequencies provided by satellites 
differ by block, and Table 1 shows the attributes of the satellites observed in the test.  For 
example, the trajectory of satellite 12 is green because it is a Block IIR-M satellite, which only 
provides L1/L2 signals.  Block IIF satellites added after Block IIR-M satellites through GPS 
modernization also provide L5 signals.  Among the satellites observed in the test, satellites 10, 
25, and 32 were Block IIF satellites.  
 In Fig. 9, the number recorded next to the satellite trajectory represents the PRN number 
of each GPS satellite, and the point close to the text is the point recorded earlier.  For example, 
we can see that satellite no. 29 was in the SEM area and gradually moved to an open sky 
environment.  In terms of comparing the observation environment by satellite, satellites 12, 
25, and 32 are considered to be unaffected by obstacles during the entire observation time.  As 
shown in Fig. 9, some data from satellites located at elevations lower than the SEM have been 
recorded, but L2 signals were intermittently blocked at an elevation lower than the SEM.  In 

(a) (b) (c)

Fig. 8. (Color online) Topographical characteristics of the test area. (a) Outer square area of the test point 
with a 50 m radius. (b) Result of enlarging the white square area in (a), where the green dot represents the GPS 
observation point. (c) Result of extracting the elevation information of area (b) from the DSM and displaying in 
three dimensions, where the red dot represents the GPS observation point.
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terms of comparing the observation rate of L1 data, satellites 12, 25, and 32 located at elevations 
higher than the SEM area showed observation rates higher than 99%, followed by satellites 
29, 14, 10, and 31.  In the case of satellite 31, most of the signals were blocked and could not be 
recorded or were the results of recording multipath signals.  
 Figure 10 shows the characteristics of GPS satellite signals over time, and the red squares 
indicate the sections where satellites were at elevations lower than the SEM.  Figure 10(a) 
shows the results of recording observations by each satellite over time.  In terms of satellites 
12, 25, and 32, which were at elevations higher than the SEM, most of the observations were 
collected normally.  On the other hand, the signals of satellites that entered elevations lower 
than the SEM were temporarily disconnected or blocked.  In particular, L2 signals were blocked 
more frequently than other signals.  Figure 10(b) shows the results of calculating MP1 by each 
satellite and the elevation change over time.  Since both L1 and L2 observations are necessary 
to calculate MP1, there are gaps in the MP1 calculation results for satellites 10, 14, 29, and 31, 
owing to blocked signals.  

Fig. 9. (Color online) Results of overlapping the SEM calculated at the GPS observation point and the azimuth 
and elevation of observed GPS satellites. The dots represent the trajectories of the satellites and the colors represent 
yellow: L1, green: L1/L2, red: L1/L5, and blue: L1/L2/L5.

Table 1
GPS satellite PRN numbers and attributes observed in the field test.

PRN GPS block Available signal 
frequency

L1 observation
 rate (%)

Existence of 
obstacles in LOS

MP1 RMS 
(m)

MP2 RMS 
(m)

10 IIF L1/L2/L5 44.0 ○ 0.44 0.47
12 IIR-M L1/L2 99.4 0.61 0.76
14 IIR L1/L2 56.5 ○ 0.21 0.24
25 IIF L1/L2/L5 100 0.11 0.19
29 IIR-M L1/L2 63.3 ○ 0.96 0.93
31 IIR-M L1/L2 32.6 ○ 0.55 0.69
32 IIF L1/L2/L5 100 0.03 0.09
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 We can see that consecutive MP1 values were calculated for satellites 12, 25, and 32, 
and satellite 12 showed a large amplitude of MP1 values in the latter half of the observation 
compared with satellites 25 and 32.  This is because the elevation angle of satellite 12 was lower 
than those of satellites 25 and 32, and the stainless steel constituting the outer wall of the vehicle 
repair building in the corresponding azimuth caused multipath effects.  This phenomenon has 
also been found in the long-term data analysis of the permanent GPS station near the stainless-
steel structure.(19)  The MP1 and MP2 RMS values of satellites 25 and 32, which were at 
elevations higher than the SEM, were lower than those of other satellites, providing stable 
observations.

4. Conclusions and Future Challenges

 In this study, we developed an algorithm that can determine the range of GNSS signals that 
may be blocked by surrounding obstacles at a certain grid point on the ground by using the 
DSM constructed by drone mapping.  As a result of evaluating the algorithm by performing 
a GPS observation test in an actual target area, we found observations even for GPS satellites 
within the SEM range, but the data continuity was degraded.  The L2 signals were disconnected 
and the amplitude of the MP1 values was significantly larger than that of the visible satellites, 
so these signals were considered to be multipath signals.  Therefore, in this study, we confirmed 
that we can model GNSS observation environments almost equivalent to the real world by using 
a high-resolution DSM.  

Fig. 10. (Color online) Characteristics of GPS satellite signals over time, in which the red squares indicate the 
sections where satellites were at elevations lower than the SEM. (a) Observations by each satellite. The colors of the 
dots represent yellow: L1, green: L1/L2, red: L1/L5, and blue: L1/L2/L5. (b) Changes in MP1 (blue dot) and satellite 
elevation (gray dot) over time calculated from the data of seven observed GPS satellites. 

(a)

(b)
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 Since obstacle information such as buildings does not change significantly except for special 
circumstances such as construction sites, the algorithm developed in this study can be easily 
applied by constructing a DSM by UAV mapping urban areas where the positioning accuracy 
is degraded to implement services for autonomous navigation systems in the future.  In this 
study, we could not confirm the effects of high-rise buildings outside the DSM area owing to a 
limited DSM range, so further research is necessary on setting the optimal calculation range to 
determine the SEM to apply this technology to actual cities.  GNSS satellite orbits are flexible 
but have sidereal periodicity, and we have technologies to predict the orbits.  To apply this 
technology as a method to filter multipath signals, techniques that can accurately match the 
prediction results of the satellite orbit to the target point are necessary.
 Recently, digital twin technologies that connect the real world and the cyber world have been 
proposed as a solution to implement smart cities.  3D grid-based spatial information is receiving 
much attention as a means to effectively implement city-level digital twins.  This algorithm 
can be used as a base technology to support digital twin and autonomous navigation systems 
in the future, as it can be applied to raster data and surface models of 3D grid-based spatial 
information systems based on voxel and octree.  
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