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 Using microneedles to transport drugs is one of the new, painless, and highly efficient 
transdermal drug delivery methods, which has made great strides in recent years.  However, 
many hollow and solid microneedles are usually made of silicon and polymer materials that 
have poor mechanical properties.  To improve their strength and reliability, in this study, metal 
microneedles were fabricated by dicing and electrochemical corrosion.  Firstly, the process 
parameters of electrochemical corrosion, including current and solution, were discussed and 
analyzed in detail for fabricating microneedles with sharp tips.  Secondly, the performance test 
of microneedles was carried out.  In a force test, these microneedles could penetrate artificial 
skin and rat skin, and the skins remained intact.  In an in vitro transdermal drug delivery 
test, the amount of permeated flux of bovine serum albumin (BSA) through treated rat skin 
increased by 5 times of the untreated ones.

1. Introduction

 Puncturing the skin deeply to deliver liquid drugs into the body of an organism through 
a hollow needle has been the most common invasive medical procedure for over 150 years.(1) 

However, these traditional hypodermic needles often results into uncomfortable pain, infection, 
overdose, and other hazardous outcomes because of their large size.  During the past two 
decades, microneedles have been focused on and studied widely to replace the traditional 
hypodermic needle for drug delivery, such as insulin, vaccines, and proteins.(2–6)  They 
penetrate skin to conquer the diffusion barrier of the stratum corneum (SC) of the outer skin 
with painless and accurate dosing owing to heights of less than 1 mm and diameters of 40–100 
μm with submicron tip radius.(7)  In addition, the microneedle fabrication process is highly 
accurate, reproducible, and moderate in cost.(8,9)

 Initially, many microneedles were based on silicon materials because silicon can be processed 
easily and effectively with the development of the micro-electromechanical system (MEMS).(10–12)  
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Recently, polymer microneedles have been fabricated for drug delivery.(13–15)  However, 
even if these microneedles are successfully fabricated and tested for delivering drugs, their 
inherent shortcomings, such as poor mechanical property, limit their further development.  
In comparison, metal microneedles have high strength, but their fabrication process, which 
includees electroplating or laser machining, is very costly and complex such that they must be 
further developed and studied for popularization.(16,17)

 In our previous work, we proposed one novel, low-cost method of fabricating stainless-
steel metal microneedles by the hybrid method of mechanical dicing (MD) and electrochemical 
corrosion (EC).(18)  However, the detailed fabrication process parameters are needed to be 
analyzed for their application.  Therefore, in this paper, the main process parameters of 
shaping microneedles, namely current and solution concentration of the EC, were discussed 
in detail, and the force test and transdermal drug delivery test were performed to evaluate the 
performances of these microneedles.  The results of the force test and the transdermal drug 
delivery test demonstrated that the fabricated microneedles with the analyzed parameters were 
safe and practicable, as expected.

2. Fabrication Process 

 The elaborate fabrication process was proposed in our previous paper.(18)  The fabrication 
process can be summarized as follows.  Firstly, one wafer of stainless steel with two polished 
sides, a thickness of 2 mm, and a diameter of 75 mm, was prepared [Fig. 1(a)]. Secondly, 
microcolumns were created using a dicing saw with a blade whose rotating speed is 14000 rpm 
[Fig. 1(b)]; finally, microneedles with sharp tips were achieved by electrochemical corrosion.  
The dicing saw is an automatic machine that can cut silicon easily and quickly, and the shape of 
the cut microcolumns is determined by the blades.  During the cutting, the stainless-steel wafer 
was fixed on a rectangular glass sheet of size 100 mm × 100 mm with melted wax, and the sheet 
was put on the cutting platform of the dicing saw. The speed of the blades in the dicing saw was 
approximately 14000 rpm, and its feed speed was 6 mm/s.  Therefore, the saw can process a 
75-mm-diameter silicon wafer to quickly and steadily to form microcolumns for large-volume 
production.

(a) (b) (c)

Fig. 1. Fabrication process: (a) prepare one stainless-steel wafer, (b) cut microcolumns, and (c) shape 
microneedles.
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3. Results and Discussion

3.1 EC current

 During the fabrication process, the EC current and solution concentration are the main 
impact process parameters in shaping the body and tip of microneedles.  Generally speaking, 
the microcolumn body size decreased quickly for rapid EC with large current.  The relationship 
between the EC speed and the current is shown in Fig. 2.  It shows that, under room temperature 
and in a mixture solution (H3PO4:H2SO4:H2O = 1:3:6), the EC speed was about 12 μm/min with 
3 A current and about 5 μm/min with 1.5 A current.  Therefore, a large current, such as 3 A, 
caused the microcolumn size to decrease quickly, while a small current, such as 1.5 A, modified 
the body size gradually.  
 Moreover, the current also impacted the surface roughness of microcolumns (Fig. 3).  Figure 
3 shows the images of the same microcolumns etched for 5 min in the solution (H3PO4:H2SO4:H2O 
= 1:3:6); the larger the current, the rougher the microcolumn surface.

Fig. 2. Relationship between current and EC speed (solution H3PO4:H2SO4:H2O = 1:3:6).  Each value represents 
the mean (standard deviation) of three replicates.

(a) (b) (c)

(d) (e) (f)
Fig. 3. (Color online) Images of microcolumn patches for different currents: (a) 0, (b) 0.5, (c) 1, (d) 1.5, (e) 2, and (f) 3 A.
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3.2 EC solution

 The solution is another important parameter that affects the EC speed and the shape of 
microneedles.  Table 1 lists the EC speed under different volume ratios of H3PO4, H2SO4, and 
H2O.  When the volume of H3PO4 was larger than that of H2SO4, the speed was very low, but 
when H2SO4 was over 36.4%, the speed was steady at about 5 μm/min.
 At the same current, different volume ratios of the solution lead to different surface 
roughnesses of the microcolumns.  Figure 4 shows the microcolumn images of patches before 
EC [Fig. 4(a)] and after EC [Fig. 4(b)] in the solution H3PO4:H2SO4:H2O = 3:3:6 with the current 
of 1.5 A in 3 min.  It is observed that the surface of the stainless steel patch after EC was very 
rough.  However, under the same current and etch time, when H3PO4:H2SO4:H2O was changed 
to 1:3:6, the surface was very smooth after EC, as shown in Figs. 5(a) and 5(b).

Table 1
Contents of solution and EC speed.

H2SO4 (ml) H3PO4 (ml) H2O (ml) Speed (μm/min)
20 10 60  4 
30 40 60  0.5 
30 30 60  0.6 
30 20 60  6 
30 10 60  5 
40 10 60  5.2 
50 10 60  5.3 

(a) (b)

Fig. 5. (Color online) Images of patches in the solution H3PO4:H2SO4:H2O = 1:3:6 (a) before EC and (b) after EC.

Fig. 4. (Color online) Images of patches in the solution H3PO4:H2SO4:H2O = 3:3:6 (a) before EC and (b) after EC.

(a) (b)
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(a) (b)

Fig. 6. (Color online) Scanning electron microscopy images of cut tapered microcolumns and shaped 
microneedles: (a) cut microcolumns and (b) microneedles formed after etching of microcolumns.

 Therefore, in order to obtain microneedles with a sharp tip and smooth body, the volume 
ratio of the mixture solution was selected as H3PO4:H2SO4:H2O = 1:3:6.  This mixture solution 
not only reduced the size of the metal body quickly, but also made the surface smooth and 
clean.  For example, cut tapered microcolumns, which had the height of 500 μm, bottom width 
of 300 μm, and space size of 400 μm, were made by bevel blade dicing [Fig. 6(a)].  To obtain 
microneedles with sharp tips and smooth bodies, first, the microcolumns were etched at 3 A 
current in 11 min, then at 1.5 A current in 8 min, and finally at 1 A current in 5 min [Fig. 6(b)].  
The fabricated microneedle height was about 400 μm and the bottom size was about 300 μm.

4. Performance Test 

4.1 Force test

 The fabricated 15 × 15 microneedle array patch [Fig. 6(b)] was utilized to test the force 
property on a custom-made instrument.(19)  The test conditions were as follows: (1) artificial 
skin (polyurethane, 0.35 mm, Shore 85±10, Taobao, China) or rat skin was fixed on a platform; 
(2) the constant insert speed was 1 mm/min; (3) the loading forces ranged from 0 to 10 N.   Rat 
skin 0.5–1 mm thick was excised from the abdominal skin of rats after they were sacrificed.  
The animals were given free access to food and water ad libitum unless otherwise noted.  All 
procedures were approved by the Laboratory Animal Use Committee of Shanghai Jiao Tong 
University School of Pharmacy.  All efforts were made to reduce the number of animals used, 
minimize their suffering, and utilize alternative in vivo techniques if available.  
 The test data of force and depth are shown in Fig. 7.  Under the force of 10 N, the 
microneedles pierced 260 μm into the artificial skin and 145 μm into the rat skin, respectively,  
demonstrating that the microneedles could sufficiently penetrate the SC (thickness of 20–40 
μm) of the skin.
 To observe clearly the rat skin wounds created by microneedles, Rhodamine B (5 mg/ml) 
(Shanghai Yuanye Bio-Technology Co., Ltd., China) and Lutrol F-68 (2 mg/ml) (Basf) (w:w 
= 1:1) were coated on the surfaces of microneedles.  The microneedles were immersed into 
this mixture solution for 30 s, and then dried at room temperature for 24 h.  Then, these 
microneedles were utilized to pierce into the skins and the wounds were observed using a 
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fluorescence microscope (Olympus BX61).  During the test, an artificial skin layer was placed 
under the rat skin to prevent the microneedles from being deformed.
 The holes in the artificial skin and rat skin that were penetrated by the microneedles are 
shown in Figs. 8(a) and 8(b), respectively.  This result indicated that the metal microneedles 
could penetrate skin and create passages for drugs delivery effectively.

4.2 Permeation study and results

 The important function of microneedles is to transport macromolecular drugs, such as 
protein and insulin.  Therefore, the protein bovine serum albumin (BSA, 66 kDa, Shanghai 
Yuanye Bio-Technology Co., Ltd., China) was selected to assess the permeation ability of rat 
skin using these microneedles for in vitro transdermal drug delivery.(19,20) After being treated 
by microneedles (piercing speed of 1 mm/min, piercing force of 10 N), the rat skin was placed 
on a Franz diffusion cell (Shanghai Heqi Glassware Co., Ltd., China) with a donor chamber 
and an acceptor chamber.  The SC faced the donor chamber, and the epidermis faced the 
acceptor chamber with a volume of 15 ml.  The donor chamber was filled with the 6 ml of high- 
concentration-BSA PBS solution (2 mg/ml), while the acceptor chamber was filled with PBS.  

(a) (b)

Fig. 8. (Color online) Holes in the (a) artificial skin and (b) rat skin.

Fig. 7. (Color online) Relationship between force and depth.  Each value represents the mean (standard deviation) 
of three replicates.
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Fig. 9. (Color online) In vitro transdermal drug release profile of BSA through rat skin.  Each value represents 
the mean (n ≥ 3) with standard deviation.

The PBS in the acceptor chamber was stirred to disperse the BSA into the PBS homogeneously 
and the PBS temperature was 37 °C.  This temperature was constant during the experiments.  
At certain time intervals, a 1 ml sample was taken from the acceptor chamber, and then the 
same volume of PBS was added.  Three experiments for each BSA amount were performed to 
obtain an average value.  An ultraviolet spectrophotometer was utilized to detect the BSA.(19)

 The amounts of permeated BSA with time are shown in Fig. 9.  The permeated fluxes of BSA 
through the treated and intact skins were about 0.025 and 0.005 μg/cm2/h, respectively, which 
indicated that the microneedle patch could increase the amounts of permeated macromolecule 
protein fivefold in transdermal drug delivery.

5. Conclusions

 Stainless-steel microneedles for drug delivery were proposed and fabricated by a hybrid 
process of MD and EC, and the main process parameters of electrochemical corrosion, 
namely, current and solution, were discussed and analyzed in detail.  The tapered metal 
microcolumns could be shaped into sharp tapered microneedles by EC.  The tapered tips could 
guarantee that microneedles pierce the skins well and easily.  The piercing force test shows 
that the microneedles had excellent mechanical property and were highly safe.  In an in vitro 
transdermal drug delivery test, the microneedles pierced the SC of the skins, thus improving the 
permeation flux of drugs through skins significantly.  For example, the amount of the permeated 
macromolecule protein BSA increased fivefold.
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