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	 In recent years, geological hazards have occasionally occurred throughout the world, and 
have caused immense damage to roads and lives in places where landslides have occurred.  
Thus, it is of great importance to coordinate the work of regional hazard prevention and 
reduction.  Under these circumstances, hybrid intelligent algorithm (HIA) combined with 
genetic algorithm (GA) and wavelet neural network (WNN) is proposed with the geological 
risk assessment analysis in our study.  The HIA integrated both the geographic information 
system (GIS) technology and the artificial neural network model.  In the HIA, GA is adopted to 
initialize the network connection weights and thresholds of WNN.  Moreover, in simulations, 
measurement-obtained data of geological hazards were collected by a geological environment 
monitoring station and statistic data which were extracted from the map and statistics text data 
from Ningde City in eastern China.  The proposed HIA provides us with increased accuracy 
compared with established methods using traditional back propagation (BP) neural networks.  
Our result is of great importance for regional geological hazard prevention, land resources 
rational development, and proper protection of the geological environment.

1.	 Introduction

	 Geological disasters always affect the development of human society and economic progress.(1)  
Landslides are a serious natural disaster next only to earthquakes and floods, and are 50–90% 
of the total number of geological disasters each year.(2)  Thus, landslide recognition is very 
important for disaster prevention, monitoring, and other applications.(3)  In recent years, theories 
and methods have been developed in this field to predict and analyze hazards more accurately, 
which involve earthquakes, landslides, mudslides, and other geohazards.  The major findings of 
these geological hazard recognition (GHR) analyses and assessments have become the principal 
guidelines of hazard mitigation and rescue implementation.(4)  At present, GHR assessments in 
most countries have adopted the following methods: expert system,(5,6) multivariate statistical 
method,(7) geostatistics,(8) time series analysis,(9,10) fuzzy comprehensive evaluation method,(11) 
grey system theory,(12,13) analytic hierarchy process,(14) gravity and magnetic methods,(15) back 
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propagation (BP) neural network,(16) and a few other approaches.  However, these methods still 
have some imperfections.  A novel approach known as hybrid intelligent algorithm (HIA) is 
proposed in this paper.  On the basis of the advantages of the wavelet neural network (WNN) 
algorithm’s solution to nonlinear problems, the genetic algorithm (GA) is employed to calculate 
initial connection weights and thresholds.  Thus, HIA can avoid falling into a local optimal 
solution and improve its convergence rate and obtain more accurate results.  In the second 
section we introduce GA, WNN, and the HIA based on the two mentioned methods; in the 
third section we introduce the data sources and pretreatment; in the fourth section we show the 
establishment of the experiments and the analysis results based on HIA method, and finally in 
the fifth section we summarize this paper.

2.	 Materials and Methods

2.1	 GA

	 GA is a stochastic search algorithm based on the theory of natural evolution,(17) including 
the process of selection, crossover, and mutation.  When GA is used for solving optimization 
problems, a set of possible solutions called populations are usually obtained.  Each possible 
solution is treated as a chromosome or an individual in the population.  Multiple individuals 
together form a solution space set, or population space.  Randomly selected individuals in 
the population space are used as the initial solution of the target optimization problem, which 
will be either kept or eliminated according to their degree of adaptation in the population, i.e., 
whether they are in compliance with the principle of survival of the fittest in the evolutionary 
process.  The good individuals will be retained until the next generation while the bad ones will 
be eliminated.  After crossover and mutation procedures, all the outstanding individuals will 
form the next population generation.  After continuous iterative optimization, the global optimal 
solution of the target problem is finally obtained.

2.2	 WNN

	 WNN is a combination of wavelet analysis theory and neural network theory,(18) which 
takes the wavelet base function as the transfer function of the hidden layer node, and the neural 
network with the error of the signal forward propagation.
	 In Fig. 1, x1, x2, ..., xM are the input parameters of the WNN, and y1, y2, ..., yN are the 
predictive outputs of the WNN.  wij is the connection weights between the input layer and the 
hidden layer.  When the input signal sequence is xi (i = 1, 2, ..., M), the output of the hidden layer 
can be expressed as

	 h( j) = h j


∑M

i=1 wi jxi − b j

a j

 , j = 1, 2, . . . ,N j = 1, 2, ..., N,	  (1)

where h( j) is the output of the jth hidden layer node, wij is the connection weight between the 
input layer and the hidden layer, aj is the scaling factor of the wavelet basis function hj, and bj 
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is the translation factor hj.  In this paper, the Morlet wavelet basis function is employed as the 
transfer function of hidden layer nodes, namely

	 y = cos(1.75x)e−x2/2 .	 (2)

The output of the WNN can be expressed as

	 y(k) =
l∑

i=1

wikh(i), k = 1, 2, . . . ,N j = 1, 2, ..., N,	 (3)

where wik denotes the hidden layer to output layer weights, h(i) is the output of the ith hidden 
layer nodes, l represents the number of hidden layer nodes and N is the number of output layer 
nodes.

2.3	 Optimization of WNN parameters with GA
 
	 The weight correction method of traditional WNN is similar to the weight optimization 
method of the BP neural network, i.e., the error back propagation method.  However, this 
method is prone to have slow convergence and local optimum drawbacks, thereby resulting 
in low prediction accuracy.  In this paper, we use the GA to optimize the initial parameters of 
the WNN.  In the search process, the GA can maintain the diversity of population, and more 
likely find the global optimal solution.  The parameters to be optimized include the translation 
factor bj of the WNN, the scaling factor aj, and the connection weights wij.  In the population 
Xi = {xi1, xi2, ..., xiT}, individual xij is expressed as xij = (a1, a2, ..., ak, b1, b2, ..., bk, w1, w2, ..., wk).  
Each individual represents a possible solution of the solution space.  We optimize the steps as 
follows:
Step 1:	 determination of WNN structure: including the input layer nodes, the hidden layer 

nodes, and the output layer nodes, etc.; 
Step 2:	 population initialization: including population size, the individual initialization, target 

error, etc.; 

x1 h1(x)

x2

xM

h2(x)

hk(x)

wij wik
y1

y2

yN

Fig. 1.	 Wavelet neural network topology.
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Step 3:	 population classification: according to the fuzzy clustering method, the initial 
population is classified into k clustering centers ck;

Step 4:	 similar individual selection: the degree of similarity between individuals in the same 
class is determined in accordance with Eq. (4).  Only one individual with the highest 
degree of similarity is retained and genetically passed to the next generation while the 
rest of the individuals are removed; 

Step 5:	 the individuals in the same population are selected according to the ranking of the 
fitness values; 

Step 6:	 determine whether the population size meets the requirements.  If yes, parallel genetic 
operations such as crossover and mutation between individuals from different classes 
are performed; otherwise, return to step 5; 

Step 7:	 determine whether or not the set target error has been achieved, if not, return to step 3; 
Step 8:	 online learning: the optimal parameters bj, aj, and wij are substituted into the WNN to 

conduct network training; 
Step 9:	 network testing: the trained WNN is used to forecast the traffic flow, and the prediction 

results are analyzed.

3.	 Data Sources and Pretreatment

3.1	 Study area

	 Ningde City is formed mostly of hills, with many mountains and a few plains.  It has a 
hot and humid climate with heavy rainfall.  Moreover, it has a complex geological structure, 
intense rock erosion, significant changes in topography and widespread construction of slope 
cutting.  With the influence of lithology, geological structure, rainfalls, human activities, and 
many other factors, geological hazards are prone to occur in Ningde.  According to a 2010 
geological disaster investigation, there are 147 potential risks for geological disasters, including 
64 landslides, 39 geological collapses, nine mudslides, and five risky slopes and ground 
subsidences.  The types of geological disasters include landslides, avalanches, unstable slopes, 
and mudslides, with landslides and collapses accounting for about 90% of the total disasters.  In 
our study, the research area is divided into 5957 cells; each cell has a size of 30 × 30 m2 (Fig. 2).

Fig. 2.	 Fishnet of research area.



Sensors and Materials, Vol. 30, No. 3 (2018)	 569

Table 1
Acquisition of measurement-obtained geological hazard factors.
Monitoring project Items Methods/tools Transmission

Rainfall Rainfall intensity Automatic rainfall station GPRS
Channel flow Flow meter GPRS

Basic physical
parameters of soil

Moisture rate Soil moisture sensor GPRS
Pore pressure Ohmmeter GPRS

Matrix suction Soil water potential sensor GPRS
Groundwater level Groundwater level apparatus GPRS

Soil pressure Soil pressure sensor componets GPRS

Deformation Internal deformation Fixed inclinometer GPRS
Surface deformation Crack displacement instrumet GPRS

Images Video monitoring station PTZ camera GPRS
Automatic storage

3.2	 Data sources and pretreatment

	 Landslide debris flow is a product of the interactions of many factors.  Through a lot 
of research and field investigations in the past, in this paper, we selected several kinds 
of influential factors: soil vegetation, lithology, elevation, slope, distance from the river, 
distance from the road, land use, human activities, rainfall, basic physical parameters of soil, 
deformation, and other factors as the hazard assessment factors of the research area, and used 
these influential factors to generate the risk evaluation factor data.  Moreover the evaluation 
factors are divided into two categories: (1) statistic data factors, including geological structure, 
topography, natural factors, and human activities; and (2) measurement-obtained data factors, 
including rainfall, basic physical parameters of soil, and deformation.  More detailed factors 
are shown in Table 1, including rainfall, channel flow velocity, soil water content, groundwater 
level, soil pore water pressure, soil pressure, deep displacement, and surface displacement of 
soil.

3.2.1	 Measurement-obtained data extraction

	 According to the historical disaster distribution points, 147 monitoring points of geological 
hazards in the research area are established to collect measurement-obtained data, including 
rainfall, basic physical parameters of soil, and deformation.  Because of the location, traffic and 
power supply of the monitoring point, we decided to use wireless intelligent sensors to monitor 
the geological hazards dynamically.  From these wireless sensors to data terminals, we set up an 
integration data center to receive data from data terminals, and the 3G and general packet radio 
service (GPRS) communication networks together formed the research area of the geological 
hazard monitoring network (Fig. 3).  Terminal intelligent equipment includes water level meter, 
displacement meter, rainfall meter, water temperature meter, soil moisture content meter, 
groundwater level meter, and so forth.  The collected data are stored and transmitted through 
wireless GPRS to the server for further processing.
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Fig. 3.	 (Color online) Design topology of the system.

	 The sensor was selected and calibrated properly, then it was buried at a specific point.  For 
example, a surface displacement meter should be installed at a point where the surface is 
cracked or might crack in the future (Fig. 4).
	 As shown in Fig. 5, the fixed inclinometer (also called a slanting probe) is the real-time 
displacement monitoring instrument for the measurement of subgrade, slope, and other 
underground deep deformations.  

3.2.2	 Statistic data extraction

	 Geographic information system (GIS) technology can extract spatial data quickly and 
accurately, and establish the spatial data for evaluation factors.  In this study, the main statistic 
data source for the map data and text statistics are based on the ArcGIS platform to extract the 
spatial data.  First of all, raster data and text data should be converted into vector data, because 
GIS is based on grid cell computing.  Therefore, after the completion of each evaluation factor 
layer extraction, it is necessary to rasterize the factor layer and the geologic hazard distribution 
map, and then perform the operation of the grid layer.  The specific extraction processes are as 
follows: (1) The study area 1:50000 geological map, land use status map in 2010 and 1:50000 
topographic map are registered and projected, and then ArcGIS software is used to transfer 
the geological disaster survey text data into the same coordinate system.  After the interactive 
data, the following vector data are obtained: lithology map, linear structure diagram, river 
water system map, historical disaster point data distribution map, land use status map, and 
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Fig. 4.	 (Color online) Installation method of (a) displacement meter and (b) soil moisture meter.

Fig. 5.	 (Color online) Fixed inclinometer.

topographic map.  (2) Using the ground statistic module in ArcGIS, the linear structure isoline 
map, the contour map of river network density and the contour map of historical geologic 
disaster distribution density are generated.  (3) According to the evaluation criteria, the 
evaluation factors are graded, and each factor layer is converted into the raster data of 30 × 30 
m2, and the factor evaluation layer is generated (Fig. 6).

3.3	 Data pretreatment

	 In this paper, we determined the weight of the statistic data factors with the analytic 
hierarchy process (AHP) algorithm in Ref. 19 to generate four factors as network input data.(19)  
The measurement-obtained data factors use the sum method to generate three factors as 
network input data.  The research area is divided into 5957 cells.  Among them, 147 cells of 
measurement-obtained data are obtained from the 147 monitoring points, and the remainder are 
obtained by interpolation.
	 However, owing to the different dimensions and units of each factor, the predicted results 
will be impacted.  In the process of network learning, the activation function of neurons is 
a bounded function, and the effects of different dimensions and units of each factor shall be 
eliminated to prevent some neurons from reaching the saturation state, while the larger input 
shall be located in the region with a large gradient of neuron activation function.  Therefore, 

(a) (b)
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Fig. 6.	 (Color online) Distribution of some attributes. (a) Distribution of slope, (b) distribution of aspect, (c) 
distribution of vegetation cover, (d) distribution of DEM, (e) distribution of road, and (f) distribution of soil type.

before training and forecasting, the input vectors shall be normalized by Eq. (4) and the raw 
data shall be processed as data between 0.1 and 0.9:

	 x′i = 0.1 + (0.9 − 0.1) × xi − ximin

ximax − ximin
.	 (4)

	 Here, xi represents the xi′ value of the input neurons before pretreatment, and represents the  
value of the input neurons after pretreatment; ximax denotes the maximum value of each neuron i  
in the input units, and ximin denotes the minimum value of each neuron i in the input units.  

(a) (b)

(c) (d)

(e) (f)
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4.	 Analysis with HIA

	 Firstly, 110 cells of data are selected randomly from 147 cells of samples as the training 
samples and the remaining 37 cells of data are taken as test samples.  All the data are 
normalized because of their different dimensions.
	 On the basis of the measurement-obtained data and statistic data, we design a WNN with 
three-layer structures, including the input layer, hidden layer and output layer.  The Morlet 
mother wavelet function is used as the transfer function of the hidden layer nodes; the WNN 
structure used in this paper is 7-8-4.  Specifically, the seven input layer nodes represent four 
kinds of statistic data and three kinds of measurement-obtained data; the eight hidden layer 
nodes and the output layer are set for four neurons y1–y4, which respectively correspond to 
geological hazard risks in the four levels, namely, high-risk zones, medium-risk zones, low-
risk zones, and no-risk zones.  In order to facilitate the calculation, the encoding process uses 
four-digit encoding, which is composed of 0 and 1, namely, high-risk, medium-risk, low-risk, 
and no-risk zones, which correspond to 1000, 0100, 0010, and 0001, respectively.  The initial 
parameters of WNN are the optimal values optimized with GA.  The GA considers the initial 
parameters of WNN as population, where the population size is 100, the number of evolution 
generation required for termination is 100, the crossover probability is 0.8, and the mutation 
probability is 0.1.
	 To better illustrate the effectiveness of the HIA, we build three kinds of prediction model 
and compare them with the parameters of the mean absolute error (MAE) and the mean relative 
error (MRE).  The three models assessed geological hazard based on BP, WNN, and HIA.  In 
the experiment, Table 2 shows the results of MAE and MRE, which are obtained from these 
different models.  
	 It can be seen from Table 2 that the MAE and MRE obtained with HIA are lower than those 
obtained from BP and WNN.  Thus, the HIA model has achieved satisfactory results, which are 
closer to the field data than those obtained with the other two models.  By the same method, we 
applied the trained network of HIA to obtain the output layer values of the other 5810 cells and 
they are shown in Fig. 7.
	 According to the weighted comprehensive evaluation model, a Ningde geological hazard 
zoning diagram is compiled based on ArcGIS (Fig. 7).  By statistical analysis, the area of the 
high-risk zone is 19% of the total area, and the medium-risk zones for geological disasters are 
relatively widely distributed, and the area is 37% of the total area.  The medium-risk zones 
and the high-risk zones are mainly located on the tectonic belt of the Zhejiang–Fujian uplift 
area, which is the transition of the Alpine region and the coastal area of medium and low 
mountainous areas.  Widespread destruction of the mountain accumulated a large number of 
loose deposits.  Some mountains have cracks of up to hundreds of meters, which may induce 
new geological hazards.  These zones show the characteristics of distribution along the high and 
medium-high risk zones.  They are mainly distributed in mountain areas with steeper terrain, 
with some of them distributed along the secondary fault zones.  On the other hand, the low and 
medium-low risk zones are distributed most widely, and the area is 44% of the total area.  They 
are mainly distributed in medium sloped areas, vegetation covered lands, and rocky areas.
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Fig. 7.	 (Color online) Sensitivity levels of HIA.

Table 2
Comparison of training and testing with MAE and 
MRE in different models.

Model Training Testing
MAE MRE MAE MRE

BP 21.007 0.3068 22.256 0.3766
WNN 16.028 0.2893 17.112 0.3321
HIA 12.436 0.2133 12.823 0.2491

	 The zones more prone to geological disasters are mainly located in the southeast of the 
Jiaonan-Jiaobei King Temple-Zhangwan-Shangtang-Xiatang-Midwest Hordong area, Chixi, 
Yangzhong, outside of Hubei basin and Huangjiadun-Hulanli, the northeast corner of the 
Linyangtou-Wushan.  Its area is about 285 km2.  The zones prone to geological disasters are 
mainly distributed in the middle east of Jiaocheng District and Sandu area of 456 km2.  The 
zones less prone to geological hazards are mainly distributed in the northwest and southeast of 
Jiaocheng District.  Its area is about 550 km2.  Geological disasters do not easily occur in the 
west, sparsely populated middle, low mountainous areas, and low plains.  Its area is about 190 
km2, accounting for about 13% of the land area.

5.	 Conclusions

	 To overcome the slow convergence speed and local optimal problems of the WNN, we 
proposed the HIA model, which uses GA to optimize the initial parameters of WNN.  The 
proposed model overcomes the unidirectional optimization, relatively low predication accuracy 
and other shortcomings of the gradient correction method, which uses traditional WNN to 
optimize the initial parameters.  Our experimental results show that the prediction accuracy of 
HIA is significantly higher than that of simple BP and WNN.  Therefore, it is feasible to apply 
HIA to geological hazard risk prediction.
	 A hybrid model of prediction for geological hazard is developed.  Within the model, the 
prediction was performed using different geological and geophysical methods.  The advantages 
of each method are combined, while the disadvantages are avoided.  Our model is characterized 
by the emphasis on geological analysis, and the points of geological hazards are the key points 
for prediction.  As shown in these case studies, this model is an effective method of predicting 
geological hazards.  Because the application of the prediction model requires professional 
experience of geology and geophysics, efforts should be made to develop an expert system in 
the future.
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