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	 In this work, a bridge-type piezoelectric energy harvester combined with proof masses that 
can work at high acceleration was designed, simulated, and fabricated.  The energy harvester was 
achieved by bonding bulk Pb[ZrxTi1−x]O3 (PZT) onto a flexible phosphor bronze substrate by a low-
temperature process, and an additional tungsten mass was assembled at the center of the bridge top 
surface to reduce the resonant frequency of the harvester.  The device has good flexibility and is 
operable under high-acceleration conditions.  The experimental results showed that at the resonant 
frequency, which is 511 Hz, the maximum open-circuit voltage is 4.72 V, when the input vibration 
acceleration is 8g.  The maximum output power and output power density under 8g are 56.74 μW 
and 721.286 μW/cm3, respectively.  Additionally, we applied the fabricated device on a vacuum 
compression pump to test the output voltage, and found the maximum output voltage to be 0.34 V.  

1.	 Introduction

	 Thanks to the rapid development of micro-electromechanical system (MEMS) technology, 
wireless sensor networks, wearable devices, and implantable devices are now being widely used 
in our daily life.(1,2)  However, how to power these devices has become an issue.(3–5)  Energy 
harvesters based on MEMS technology can convert vibration energy excited in our environment 
into a source of electrical energy to power these devices and has become a hot research topic 
of many research groups.(6–8)  Compared with a traditional battery, piezoelectric MEMS-based 
energy harvesters have some advantages, such as miniature size, simple structure, and long 
lifetime.(9,10)  Now, Pb[ZrxTi1−x]O3 (PZT) piezoelectric ceramics are commonly used in energy 
harvesters to generate excellent output power owing to their high piezoelectric coefficients and 
electromechanical coupling.(11,12)  A PZT film can be prepared by several techniques, such as 
sputtering, epitaxial growth, sol-gel spin on, hydrothermal method, and screen printing, which 
usually require high-temperature processes that restrain the film density.(13)  Now, the preparation 
of a high-quality PZT film at low temperature using bulk PZT has been achieved.(10,14)  On the 
other hand, a thicker and uniform PZT film will create better output power.  Bulk PZT was bonded 
with the substrate and then ground to form a thicker PZT film.  At present, piezoelectric energy 
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harvesters are usually fabricated as cantilevers, which undergo large deformation when subjected 
to a large force in a vibration environment.  Then, the application of the energy harvesters will 
be restricted because their encapsulation is difficult, leading to susceptibility to damage.(15)  As a 
consequence, a bridge-type structure has been designed and prepared.  The amplitude of an energy 
harvester is decreased because the beam is fixed at both ends.
	 Traditionally, piezoelectric energy harvesters are fabricated by bonding a bulk PZT film with 
a silicon substrate.(16,17)  Failure of the device occurs owing to the brittleness of silicon when it 
bears a large external mechanical force or high acceleration.(4,6,18)  In particular, the acceleration 
of a vibration source can exceed 10g in some production or military facilities.(19)  Therefore, it is 
necessary for those energy harvesters to be operable under high-acceleration or massive-impact 
conditions.  In our study, phosphor bronze substrate is utilized as the bonding substrate owing to 
its flexibility and elasticity, which will broaden the application range and improve the reliability of 
the harvester.  Moreover, the vibration frequency of excitation sources would vary from one case to 
another.(18,20)

	 In this paper, we propose a bridge-type piezoelectric energy harvester fabricated by the standard 
MEMS technique including the thinning and polishing of bulk PZT by mechanical grinding as 
well as the formation of a silicon proof mass by deep reactive-ion etching (DRIE) methods.  The 
energy harvester is operable at high acceleration.  The microfabrication process of the bridge-
type piezoelectric energy harvester is illustrated.  Finally, the fabricated harvester performance is 
experimentally tested.

2.	 Design and Fabrication

2.1	 Design of energy harvester

	 In accordance with our design, we proposed a bridge-type structure of the energy harvester in 
order to realize a small amplitude under high acceleration.  Thus, the energy harvester can work 
at high acceleration.  The structure mainly includes a piezoelectric functional layer, conductive 
epoxy adhesive layer, phosphor bronze substrate supporting layer, and proof masses of integrated 
silicon and assembled tungsten.  Figure 1(a) shows the cross-sectional diagram of the harvester.  In 
order to simplify the simulation process, a surrogate model was set up as shown in Fig. 1(b).  The 

(a) (b)

Fig. 1.	 (Color online) (a) Cross-sectional image and (b) simplified model of the device. 
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dimensions of the designed energy harvester are given in Table 1.  The result of the finite element 
method (FEM) modeling simulation by ANSYS is shown in Fig. 2.  The 1st and 2nd resonant 
frequencies are 583.98 and 796.34 Hz, respectively.  Simultaneously, it can be seen that the bridge-
type structure generates the twisted deformation at the resonant frequency.

2.2	 Fabrication of energy harvester

	 The energy harvester was achieved by bonding bulk PZT onto a flexible phosphor bronze 
substrate by a low-temperature process and manufacturing a piezoelectric layer by the standard 
MEMS technique.  An additional tungsten mass was assembled at the center of the bridge top 
surface for the sake of reducing the resonant frequency of the harvester.
	 The main fabrication process comprises the bonding, mechanical thinning, and polishing of 
bulk PZT, bridge structure patterning, and proof mass forming by DRIE methods.  Note that 
when a piezoelectric material is heated to its Curie temperature, it will be completely depolarized.  

Table 1
Dimensions of the designed energy harvester.
Structural layers Geometrical parameters (μm) Value

Phosphor bronze
Length (Lp)
Width (Wp)

Thickness (Tc)

12000
3000

90

PZT
Length (Lp) 
Width (Wp)

Thickness (Tp)

12000
3000

50

Silicon proof mass
Length (Lw)   
Width (Ww)

Thickness (Ts)

5000
5000

400

Tungsten proof mass
Length (Lw)
Width (Ww)

Thickness (Tw)

5000
5000

25000

Fig. 2.	 (Color online) FEM simulation of this device under (a) 1st resonant frequency of 583.98 Hz and (b) 2nd 
resonant frequency of 796.34 Hz.

(a) (b)
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Hence, the whole process must be accomplished at low temperature.  The piezoelectric layer used 
in this work is PZT-6C (provided by FUJI Ceramics Corporation), and its Curie temperature is 
about 295 °C.  The specific fabrication process is described in Fig. 3.  The process begins with 
a 400-μm-thick silicon substrate, and a 2-μm-thick plasma-enhanced chemical vapor deposition 
(PECVD) SiO2 film is deposited on one side to provide electrical isolation of silicon [Fig. 3(a)].  
Then, a 100-μm-thick phosphor bronze substrate (provided by Shanghai Yongtai Mechanical 
and Electrical Corporation) is bonded with the silicon substrate at 90 °C using 504 glue, and the 
thickness of the glue is about 4 μm.  In order to obtain a more slippery surface for enhancing the 
adhesion of bulk PZT with the phosphor bronze substrate, the latter is thinned and polished by 
mechanical lapping to a thickness of 90 μm [Fig. 3(b)].  Later, 200-nm-thick Cr/Au was sputtered as 
the bottom electrode onto one side of the PZT film.  The conductive epoxy (provided by Shanghai 
Research Institute of Synthetic Resins) was coated by screen printing as an intermediate layer 
for bonding bulk PZT with phosphor bronze substrate in vacuum at 175 °C (3 h).  The bonding 
pressure of the process is about 0.1 MPa and the thickness of the intermediate layer is about 4 μm 
[Fig. 3(c)].  The bulk PZT is thinned down to about 40 μm by mechanical lapping and polishing in 
order to improve the adhesion between the PZT film and the top electrode, and the roughness of 
its surface should be controlled to less than 30 nm [Fig. 3(d)].  The top electrode is also formed by 
sputtering 200-nm-thick Cr/Au.  Afterwards, top and bottom electrodes are divided by ion beam 
milling [Figs. 3(e) and 3(f)].  The back of the silicon proof mass is formed by lithography followed 
by reactive-ion etching (RIE) and DRIE.  The bridge-type structure is patterned by ultraviolet 
irradiation from the backside, which can avoid the ablation of the top electrode [Fig. 3(g)].  The 

Fig. 3.	 (Color online) Fabrication process of energy harvester.
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additional tungsten mass is assembled at the center of the bridge top surface to further reduce 
the resonant frequency of this device [Fig. 3(h)].  The fabricated bridge-type piezoelectric energy 
harvester is shown in Fig. 4.  In addition, the bulk PZT after thinning and polishing, as well as the 
cross-sectional image of the device, was analyzed by SEM.  Figure 4(b) indicates that there are no 
obvious holes or scratches, which means that the PZT film has high uniformity.  The structure of 
the bridge-type piezoelectric energy harvester is clearly shown in Fig. 4(c), and there is a distinct 
conductive epoxy adhesive layer between the piezoelectric layer and the supporting layer.  Both 
sides of the bridge-type structure are attached to acrylic using adhesive to fix the device. Figure 
5 shows the phase angle of the fabricated device versus the exciting frequency measured using 
an impedance analyzer (Keysight E4990A).  The 1st and 2nd resonant frequencies of the bridge 
energy harvester are 563 and 751 Hz, respectively.  There is good agreement between the FEM 
simulation and experimental results.

Fig. 4.	 (Color online) (a) Fabricated bridge piezoelectric energy harvester. (b) SEM image of the PZT surface 
after lapping and polishing. (c) Cross-sectional view of the composite cantilever.

(a) (b) (c)

Fig. 5.	 (Color online) Resonant frequency of the bridge energy harvester.
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3.	 Testing and Characterization of Energy Harvester

3.1	 Testing platform

	 The performance of the bridge-type energy harvester was investigated using the experimental 
setup given in Fig. 6(a), which includes a signal generator, a power amplifier, a shaker simulating 
the vibration source, an accelerometer, and an oscilloscope.  The signal was generated by the signal 
generator and amplified by the power amplifier to control the vibration of the energy harvester 
mounted on the shaker platform, while the vibration acceleration was monitored by the accelerator 
attached to the shaker.  The electrical output of the energy harvester under different vibration 
conditions was monitored with the oscilloscope.

Fig. 6.	 (Color online) (a) Test setup of energy harvester. (b) Measured open-circuit voltage. (c) Output load 
voltage under different load resistances. (d) Output power for different load resistances.

(a) (b)

(c) (d)
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3.2	 Characterization and discussion

	 After the test, the open-circuit voltage and loading voltage are shown in Figs. 6(b) and 6(c), 
respectively, under different resistances at accelerations from 3g to 8g.  The maximum open-
circuit voltages were increased following the augmentation of input vibration acceleration.  At the 
1st resonant frequency, the maximum open-circuit voltages are 2.1, 2.86, 3.46, 3.9, 4.4, and 4.72 V, 
when the input vibration acceleration is increased from 3g to 8g.  At the 2nd resonant frequency, 
the maximum open-circuit voltages are 0.58, 0.74, 0.88, 0.98, 1.06, and 1.08 V when the input 
vibration acceleration is increased from 3g to 8g.  Most energy harvesters can only work under 5g, 
so these results suggest that our energy harvester is operable at high acceleration without incurring 
any damage.  Figure 6(b) shows that when the acceleration of the vibration source is increased, the 
resonant frequency of the energy harvester is also decreased.  The reason for this decrease was the 
increase in the damping ratio with acceleration owing to the nonlinearity of PZT under large stress.(21)  
At the 1st resonant frequency, the structure generates the twisted deformation first owing to the 
extra-high proof mass.
	 Under the resonant frequencies, the output power will become maximum when the load 
resistance matches the resistance of the device.  As Fig. 6(c) shows, the load voltage increased with 
increasing acceleration.  Under a certain acceleration, the load voltage increases with the increase 
in the load resistance.  The increasing trend is greater at a lower load resistance than at a higher 
load resistance.
	 The output average power can be calculated using

	 P = [VP−P/(2
√

2)]2/R,	 (1)

where VP−P is the loading voltage of the peak-to-peak value, and R is the load resistance.  
	 On the basis of Eq. (1), the output power at the 1st resonant frequency for different load 
resistances is shown in Fig. 6(d).  It is observed that the maximum output power and output power 
density under 8g are 56.74 μW and 721.286 μW/cm3, respectively.  The output power curve tends 
to increase initially and subsequently decreases when the load resistance surpasses 30 kΩ, which 
indicates that the matched optimal resistance is 30 kΩ.  
	 To supervise its application in daily life, we demonstrated the energy harvester applied to a 
vacuum compression pump.  The output voltage of the fabricated device tested on the vacuum 
compression pump is shown in Fig. 7(a).  Figures 7(b) and 7(c) show the output voltage within 100 
and 0.06 s, respectively, and the obtained maximum output voltage is 0.34 V.  Despite the output 
performance being unsatisfactory, we will optimize the resonant frequency of this harvester to 
match the vibration frequency of ambient sources to improve the output power in the future.
	 Table 2 shows the performance of the piezoelectric energy harvesters.  Our device can work 
under 8g that is the highest compared with others, which can only work below 4g, and the power 
was 56.74 μW at 511 Hz.  This value was the highest at such low frequency.  
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4.	 Conclusions

	 In conclusion, we presented the fabrication of a bridge-type piezoelectric energy harvester 
operable at high acceleration.  When the input vibration acceleration is 8g, the resonant frequency is 
511 Hz, and the maximum open-circuit voltage is 4.72 V.  At the resonant frequency, the maximum 
output power and output power density under 8g are 56.74 μW and 721.286 μW/cm3, respectively.  
The matched optimal resistance is 30 kΩ.  When it was tested on the vacuum compression pump, 
the maximum output voltage was 0.34 V.  Compared with previous piezoelectric energy harvesters, 

Table 2
Comparison of recently reported performance-based piezoelectric energy harvesters.
Reference Acceleration (g) Frequency (Hz) Power (μW) Power Density (μW/cm3)
Minh(23)    0.6 1960      8.6 1623
Minh(24) 1      591.6    17.7 2870
Marzencki(25) 2 2450      2.4     34
Hajati(26) 4 1350 85   582
Emad(27) 1   140 15      280.4
This work 8   511      56.74          721.286

Fig. 7.	 (Color online) Output voltage of the fabricated device tested on the vacuum compression pump. 

(a)

(b) (c)
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our device possesses better flexibility and resistance to larger mechanical force, which means 
that it can be applied to power inertial sensors in high-acceleration environments in military 
applications.  The resonant frequency of the energy harvester can also be reduced by increasing the 
ratio of length to width or adding a proof mass to gain better output power.
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